Research Article
BibTex RIS Cite

Copper(II) bioremoval by thermophile Cyanobacterium aponinum

Year 2023, Volume: 32 Issue: 1, 1 - 13, 03.06.2023
https://doi.org/10.53447/communc.1135560

Abstract

In the current study, bioremediation of Cu(II) by thermophile Cyanobacterium aponinum has been studied in BG11 media under different conditions. The optimum pH was 9 due to the maximum Cu(II) bioremoval efficiency as 71% in the medium with12.8 mg/L Cu(II). According to the results obtained from the trials, the highest bioremoval was 76.6% in the medium including 9.7 mg/L Cu(II) for incubation period of 10 days. When the effect of increasing temperature (25-45 °C) and biomass [20% and 40% (v/v)] concentrations on bioremediation by C. aponinum was investigated, the highest heavy metal removal was found 75.8% at 45 °C, 12.8 mg/L Cu(II), and 20% (v/v) biomass concentration. It was 76.3% in the medium with 13.8 mg/L pollutant, 40% (v/v) biomass concentration. The qm (maximum specific Cu(II) removal) was found as 6.1 mg/g at 45 °C in BG11 with 40% (v/v) biomass and 13.8 mg/L Cu(II). It has been concluded that Cu(II) bioremediation by thermophile C. aponinum was firstly investigated at various environmental conditions in this study. The results indicated that the tested cyanobacterium had a great potential to remove heavy metals from the aquatic environments, containing Cu(II).

Supporting Institution

Ankara University

Project Number

21L0430005

References

  • Vardhan, K.H., Kumar, P.S., Panda, R.C., A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J. Mol. Liq., 290 (2019), 1-22 (111197). https://doi.org/10.1016/j.molliq.2019.111197.
  • Safari, M., Ahmady-Asbchin, S., Biosorption of zinc from aqueous solution by cyanobacterium Fischerella ambigua ISC67: optimization, kinetic, isotherm and thermodynamic studies. Water Science and Technology, 78(7) (2018), 1525-1534. https://doi.org/10.2166/wst.2018.437.
  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2) (2014), 60-72. https://doi.org/10.2478/intox-2014-0009.
  • Nassef, E., El-Taweel, Y.A., Removal of copper from wastewater by cementation from simulated leach liquors. Journal of Chemical Engineering & Process Technology, 6(1) (2015), 1-6. https://doi.org/10.4172/2157-7048.1000214.
  • Spain, A., Alm, E., Implications of microbial heavy metal tolerance in the environment. Reviews in Undergraduate Research, 2 (2003), 1-6.
  • Asha L.P, Sandeep R.S. Review on bioremediation-potential tool for removing environmental pollution. International Journal of Basic and Applied Chemical Sciences, 3 (2013), 21-33.
  • Bhatnagar, S., Kumari, R., Bioremediation: a sustainable tool for environmental management – a review. Annu. Rev. Res. Biol., 3(4) (2013), 974-993.
  • Koehn, J.D., Hobday, A.J., Pratchett, M.S., Gillanders, B.M., Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Marine and Freshwater Research, 62(9) (2011), 1148-1164.
  • Praveena Kumari, N., Raghuram, M,. “Lead induced alterations in PSII and lipid peroxidation of Oscillatoria subbrevis and its relevance in bioremediation of lead”. International Journal of Sciences: Basic and Applied Research (IJSBAR), 36(5) (2017), 159-165.
  • Chekroun, K.B., Baghour, M., “The role of algae in phytoremediation of heavy metals: a review”. J. Mater Environ. Sci., 4(6) (2003), 873-880.
  • Giovanella, P., Cabral, L., Costa, A.P., De Oliveira Camargo, F.A., Gianello, C. and Bento, F.M., Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol. Environ. Safe., 140 (2017), 162-169. https://doi.org/10.1016/j.ecoenv.2017.02.010.
  • Giovanella, P., Vieira, G.A.L., Otero, I.V.R., Pellizzer, E.P., Fontes, B.J. and Sette, L.D., Metal and organic pollutants bioremediation by extremophile microorganisms. J. Hazard. Mater., 382 (2020), 1-14 (121024). https://doi.org/10.1016/j.jhazmat.2019.121024.
  • De Philippis, R., Paperi, R., Sili, C., Heavy metal sorption by released polysaccharide sand whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation, 18(2) (2007), 181–187.
  • Tonietto, A.E., Lombardi, A T., Vieira, A.H.V., Parrish, C.C., Choueri, R.B., Cylindrospermopsis raciborskii (Cyanobacteria) exudates: chemical characterization and complexation capacity for Cu, Zn, Cd and Pb. WaterResearch, 49 (2014), 381-390. https://doi.org/10.1016/j.watres.2013.10.025.
  • Heidari A., Atigh Z.B.Q., Sepehr A., Bahreini M., Mahbub, K.R., Bioremediation of heavy metal contaminated soils originated from iron Ore Mine by Bio-augmentation with native Cyanobacteria. Iranian (Iranica) Journal of Energy and Environment, 11(2) (2020), 89-96. https://doi.org/10.5829/IJEE.2020.11.02.01.
  • Balaji, S., Kalaivani, T., Rajasekaran, C., Shalini, M., Siva, R., Singh, R.K., Akthar, M.A., Arthrospira (Spirulina) species as bioadsorbents for lead, chromium, and cadmium – a comparative study. Clean – Soil, Air, Water., 42(12) (2014), 1790–1797. https://doi.org/10.1002/clen.201300478.
  • Hazarika, J., Pakshirajan, K., Sinharoy, A., Syiem, M.B., Bioremoval of Cu(II), Zn(II), Pb(II) and Cd(II) by Nostoc muscorum isolated from a coalmining site. J. Appl. Phycol., 27(4) (2014), 1525-1534.
  • Kılıç, N.K., Dönmez, G., Bioactive compound activity inducement of thermophile Cyanobacterium aponinum under stress conditions. Hacettepe J. Biol. & Chem., 49(3) (2021), 233-242. https://doi.org/10.15671/hjbc.696762.
  • Rippka, R., Isolation and purification of cyanobacteria. Method Enzymology, 167 (1988), 3-27.
  • Snell, F.D., Snell, C.T., Colorimetric methods of analysis. Vol 2, 3rd edition, D Van Nostrand Company, New York, 1959.
  • Zinicovscaia, I., Safonov, A., Ostalkevich, S., Gundorina, S., Nekhoroshkov, P. and Grozdov, D., Metal ions removal from different type of industrial effluents using Spirulina platensis biomass. Int. J. Phytorem., 21(14) (2019), 1442–1448. https://doi.org/10.1080/15226514.2019.1633264.
  • Sen S., Dutta S., Guhathakurata S., Chakrabarty J., Nandi S., Dutta A., Removal of Cr(Vı) using a cyanobacterial consortium and assessment of biofuel production. International Biodeterioration & Biodegradation, 119 (2017), 211-224. https://doi.org/10.1016/j.ibiod.2016.10.050.
  • Panta, G., Singha, A., Panchpuria, M., Prasunab, R.G., Hossainc, K., Abbas, S. Z., Ahmad, A., Ismail, N., Rafatullahc, M., Enhancement of biosorption capacity of cyanobacterial strain to remediate heavy metals. Desalin. Water Treat., 165 (2019), 244-252.
  • Fawzy, M.A., Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism. Environmental toxicology and pharmacology, 46 (2016), 116-121. https://doi.org/10.1016/j.etap.2016.07.008.
  • Kumar, J.N., Oommen, C., Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. Journal of Environmental Biology, 33(1) (2012), 27-31.
  • Zinicovscaia, I., Cepoi, L., Cyanobacteria for bioremediation of wastewaters. Springer International Publishing, Basel, Switzerland, 2016.
  • Gris, B., Sforza, E., Morosinotto, T., Bertucco, A., La Rocca, N., Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. Journal of Applied Phycology, 29(4) (2017), 1781-1790.
  • Meng, F., Cui, H., Wang, Y., Li, X., Responses of a new isolated Cyanobacterium aponinum strain to temperature, pH, CO2 and light quality. Journal of Applied Phycology, 30(3) (2018), 1525-1532.
  • Yadav, A.P.S., Dwivedi, V., Kumar, S., Kushwaha, A., Goswami, L., Reddy, B.S., Cyanobacterial extracellular polymeric substances for heavy metal removal: a mini review. Journal of Composites Science, 5(1) (2021), 1-18. https://doi.org/10.3390/jcs5010001.
Year 2023, Volume: 32 Issue: 1, 1 - 13, 03.06.2023
https://doi.org/10.53447/communc.1135560

Abstract

Project Number

21L0430005

References

  • Vardhan, K.H., Kumar, P.S., Panda, R.C., A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J. Mol. Liq., 290 (2019), 1-22 (111197). https://doi.org/10.1016/j.molliq.2019.111197.
  • Safari, M., Ahmady-Asbchin, S., Biosorption of zinc from aqueous solution by cyanobacterium Fischerella ambigua ISC67: optimization, kinetic, isotherm and thermodynamic studies. Water Science and Technology, 78(7) (2018), 1525-1534. https://doi.org/10.2166/wst.2018.437.
  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N., Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2) (2014), 60-72. https://doi.org/10.2478/intox-2014-0009.
  • Nassef, E., El-Taweel, Y.A., Removal of copper from wastewater by cementation from simulated leach liquors. Journal of Chemical Engineering & Process Technology, 6(1) (2015), 1-6. https://doi.org/10.4172/2157-7048.1000214.
  • Spain, A., Alm, E., Implications of microbial heavy metal tolerance in the environment. Reviews in Undergraduate Research, 2 (2003), 1-6.
  • Asha L.P, Sandeep R.S. Review on bioremediation-potential tool for removing environmental pollution. International Journal of Basic and Applied Chemical Sciences, 3 (2013), 21-33.
  • Bhatnagar, S., Kumari, R., Bioremediation: a sustainable tool for environmental management – a review. Annu. Rev. Res. Biol., 3(4) (2013), 974-993.
  • Koehn, J.D., Hobday, A.J., Pratchett, M.S., Gillanders, B.M., Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Marine and Freshwater Research, 62(9) (2011), 1148-1164.
  • Praveena Kumari, N., Raghuram, M,. “Lead induced alterations in PSII and lipid peroxidation of Oscillatoria subbrevis and its relevance in bioremediation of lead”. International Journal of Sciences: Basic and Applied Research (IJSBAR), 36(5) (2017), 159-165.
  • Chekroun, K.B., Baghour, M., “The role of algae in phytoremediation of heavy metals: a review”. J. Mater Environ. Sci., 4(6) (2003), 873-880.
  • Giovanella, P., Cabral, L., Costa, A.P., De Oliveira Camargo, F.A., Gianello, C. and Bento, F.M., Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol. Environ. Safe., 140 (2017), 162-169. https://doi.org/10.1016/j.ecoenv.2017.02.010.
  • Giovanella, P., Vieira, G.A.L., Otero, I.V.R., Pellizzer, E.P., Fontes, B.J. and Sette, L.D., Metal and organic pollutants bioremediation by extremophile microorganisms. J. Hazard. Mater., 382 (2020), 1-14 (121024). https://doi.org/10.1016/j.jhazmat.2019.121024.
  • De Philippis, R., Paperi, R., Sili, C., Heavy metal sorption by released polysaccharide sand whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegradation, 18(2) (2007), 181–187.
  • Tonietto, A.E., Lombardi, A T., Vieira, A.H.V., Parrish, C.C., Choueri, R.B., Cylindrospermopsis raciborskii (Cyanobacteria) exudates: chemical characterization and complexation capacity for Cu, Zn, Cd and Pb. WaterResearch, 49 (2014), 381-390. https://doi.org/10.1016/j.watres.2013.10.025.
  • Heidari A., Atigh Z.B.Q., Sepehr A., Bahreini M., Mahbub, K.R., Bioremediation of heavy metal contaminated soils originated from iron Ore Mine by Bio-augmentation with native Cyanobacteria. Iranian (Iranica) Journal of Energy and Environment, 11(2) (2020), 89-96. https://doi.org/10.5829/IJEE.2020.11.02.01.
  • Balaji, S., Kalaivani, T., Rajasekaran, C., Shalini, M., Siva, R., Singh, R.K., Akthar, M.A., Arthrospira (Spirulina) species as bioadsorbents for lead, chromium, and cadmium – a comparative study. Clean – Soil, Air, Water., 42(12) (2014), 1790–1797. https://doi.org/10.1002/clen.201300478.
  • Hazarika, J., Pakshirajan, K., Sinharoy, A., Syiem, M.B., Bioremoval of Cu(II), Zn(II), Pb(II) and Cd(II) by Nostoc muscorum isolated from a coalmining site. J. Appl. Phycol., 27(4) (2014), 1525-1534.
  • Kılıç, N.K., Dönmez, G., Bioactive compound activity inducement of thermophile Cyanobacterium aponinum under stress conditions. Hacettepe J. Biol. & Chem., 49(3) (2021), 233-242. https://doi.org/10.15671/hjbc.696762.
  • Rippka, R., Isolation and purification of cyanobacteria. Method Enzymology, 167 (1988), 3-27.
  • Snell, F.D., Snell, C.T., Colorimetric methods of analysis. Vol 2, 3rd edition, D Van Nostrand Company, New York, 1959.
  • Zinicovscaia, I., Safonov, A., Ostalkevich, S., Gundorina, S., Nekhoroshkov, P. and Grozdov, D., Metal ions removal from different type of industrial effluents using Spirulina platensis biomass. Int. J. Phytorem., 21(14) (2019), 1442–1448. https://doi.org/10.1080/15226514.2019.1633264.
  • Sen S., Dutta S., Guhathakurata S., Chakrabarty J., Nandi S., Dutta A., Removal of Cr(Vı) using a cyanobacterial consortium and assessment of biofuel production. International Biodeterioration & Biodegradation, 119 (2017), 211-224. https://doi.org/10.1016/j.ibiod.2016.10.050.
  • Panta, G., Singha, A., Panchpuria, M., Prasunab, R.G., Hossainc, K., Abbas, S. Z., Ahmad, A., Ismail, N., Rafatullahc, M., Enhancement of biosorption capacity of cyanobacterial strain to remediate heavy metals. Desalin. Water Treat., 165 (2019), 244-252.
  • Fawzy, M.A., Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism. Environmental toxicology and pharmacology, 46 (2016), 116-121. https://doi.org/10.1016/j.etap.2016.07.008.
  • Kumar, J.N., Oommen, C., Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. Journal of Environmental Biology, 33(1) (2012), 27-31.
  • Zinicovscaia, I., Cepoi, L., Cyanobacteria for bioremediation of wastewaters. Springer International Publishing, Basel, Switzerland, 2016.
  • Gris, B., Sforza, E., Morosinotto, T., Bertucco, A., La Rocca, N., Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. Journal of Applied Phycology, 29(4) (2017), 1781-1790.
  • Meng, F., Cui, H., Wang, Y., Li, X., Responses of a new isolated Cyanobacterium aponinum strain to temperature, pH, CO2 and light quality. Journal of Applied Phycology, 30(3) (2018), 1525-1532.
  • Yadav, A.P.S., Dwivedi, V., Kumar, S., Kushwaha, A., Goswami, L., Reddy, B.S., Cyanobacterial extracellular polymeric substances for heavy metal removal: a mini review. Journal of Composites Science, 5(1) (2021), 1-18. https://doi.org/10.3390/jcs5010001.
There are 29 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Seda Şen 0000-0002-1187-2811

Nur Koçberber Kılıç 0000-0003-2668-3789

Gönül Dönmez 0000-0001-7972-5570

Project Number 21L0430005
Publication Date June 3, 2023
Acceptance Date December 27, 2022
Published in Issue Year 2023 Volume: 32 Issue: 1

Cite

Communications Faculty of Sciences University of Ankara Series C-Biology.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.