Year 2025,
Volume: 34 Issue: 1, 76 - 103, 20.06.2025
Melike Ersin
,
Elif Gönül
,
Ezginur Duman
,
Gizem Gül
,
Dilay Turu
,
Atakan Benek
,
Kerem Canlı
Project Number
1919B012320500
References
-
Flint, H.J., Why Gut Microbes Matter. Springer International Publishing: Aberdeen, UK, 2020. https://doi.org/10.1007/978-3-030-43246-1
-
Soni, J., Sinha, S., Pandey, R., Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Frontiers in Microbiology, 15 (2024). https://doi.org/10.3389/fmicb.2024.1370818
-
Panthee, B., Gyawali, S., Panthee, P., Techato, K., Environmental and Human Microbiome for Health. Life, 12 (2022). https://doi.org/10.3390/life12030456
-
Ryan, M.P., Sevjahova, L., Gorman, R., White, S., The Emergence of the Genus Comamonas as Important Opportunistic Pathogens. Pathogens, 11 (2022), 1032. https://doi.org/10.3390/pathogens11091032
-
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., Osek, J., Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11 (2022), 1079. https://doi.org/10.3390/antibiotics11081079
-
Zhang, F., Cheng, W., The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics, 11 (2022), 1215. https://doi.org/10.3390/antibiotics11091215
-
WHO, WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health, WHO: Geneva, 2014. https://www.who.int/southeastasia/news/detail/30-04-2014-who-s-first-global-report-on-antibiotic-resistance-reveals-serious-worldwide-threat-to-public-health.
-
Canlı, K., Yetgin, A., Benek, A., Bozyel, M.E., Murat Altuner, E., In Vitro Antimicrobial Activity Screening of Ethanol Extract of Lavandula stoechas and Investigation of Its Biochemical Composition. Advances in Pharmacological Sciences, (2019). https://doi.org/10.1155/2019/3201458
-
Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., Salamat, M.K.F., Baloch, Z., Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11(2018), 1645–1658. http://dx.doi.org/10.2147/IDR.S173867
-
Centers for Disease Control and Prevention (CDC), Antibiotic Resistance Threats in the United States. CDC: Atlanta, Georgia, 2019. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html
-
Giacomini, E., Perrone, V., Alessandrini, D., Paoli, D., Nappi, C., Degli Esposti, L., Evidence of Antibiotic Resistance from Population-Based Studies: A Narrative Review. Infection and Drug Resistance, 14 (2021). http://doi.org/10.2147/IDR.S289741
-
Baran, A., Kwiatkowska, A., Potocki, L., Antibiotics and Bacterial Resistance—A Short Story of an Endless Arms Race. International Journal of Molecular Sciences, 24 (2023), 5777. https://doi.org/10.3390/ijms24065777
-
Breijyeh, Z., Jubeh, B., Karaman, R., Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 25 (2020), 1340. https://doi.org/10.3390/molecules25061340
-
Canlı, K., Turu, D., Benek, A., Bozyel, M.E., Şimşek, Ö., Altuner, E.M., Biochemical and Antioxidant Properties as well as Antimicrobial and Antibiofilm Activities of Allium scorodoprasum subsp. jajlae (Vved.) Stearn. Current Issues in Molecular Biology, 45 (2023), 4970–4984. https://doi.org/10.3390/cimb45060316
-
Bailly, C., Traditional uses, pharmacology and phytochemistry of the medicinal plant Flueggea virosa (Roxb. ex Willd.) Royle. Future Pharmacology, 4 (2024), 77–102. https://doi.org/10.3390/futurepharmacol4010007
-
Yazarlu, O., Iranshahi, M., Kashani, H.R.K., Reshadat, S., Habtemariam, S., Iranshahy, M., Hasanpour, M., Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review. Pharmacological Research, 174 (2021), 105841. https://doi.org/10.1016/j.phrs.2021.105841
-
Salmerón-Manzano, E., Garrido-Cardenas, J.A., Manzano-Agugliaro, F., Worldwide research trends on medicinal plants. International Journal of Environmental Research and Public Health, 17 (2020), 3376. https://doi.org/10.3390/ijerph17103376
-
Angelini, P., Plant-derived antimicrobials and their crucial role in combating antimicrobial resistance. Antibiotics, 13 (2024), 746. https://doi.org/10.3390/antibiotics13080746
-
Turu, D., Bozyel, M.E., Candan, K., Yakan, M.A., Benek, A., Canlı, K., In vitro antimicrobial and antioxidant activities of Pyracantha coccinea fruits ethanol extract. International Journal of Academic Multidisciplinary Research, 4 (2020).
-
Xu, Z., Ullah, N., Duan, Y., Hou, Z., Liu, A., Xu, L., Editorial: Plant secondary metabolites and their effects on environmental adaptation based on functional genomics. Frontiers in Genetics, 14 (2023). https://doi.org/10.3389/fgene.2023.1211639
-
Bozkurt, S.D., Turu, D., Gül, G., Yaman, C., Benek, A., Canlı, K., Determination of antioxidant activity and biochemical content of Homalothecium philippeanum (Spruce) Schimp. Anatolian Bryology, 10 (2024), 169–178. https://doi.org/10.26672/anatolianbryology.1576833
-
Ji, X., Hou, C., Guo, X., Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L. (Plantaginaceae): A review. International Journal of Biological Macromolecules, 135 (2019), 637–646. https://doi.org/10.1016/j.ijbiomac.2019.05.211
-
Kolak, U., Boğa, M., Uruşak, E.A., Ulubelen, A., Constituents of Plantago major subsp. intermedia with antioxidant and anticholinesterase capacities. Turkish Journal of Chemistry, (2011). https://doi.org/10.3906/kim-1102-990
-
Gonçalves, S., Romano, A., The medicinal potential of plants from the genus Plantago (Plantaginaceae). Industrial Crops and Products, 83 (2016), 213–226. https://doi.org/10.1016/j.indcrop.2015.12.038
-
Pol, M., Schmidtke, K., Lewandowska, S., Plantago lanceolata – An overview of its agronomically and healing valuable features. Open Agriculture, 6 (2021), 479–488. https://doi.org/10.1515/opag-2021-0035
-
Bahadori, M.B., Sarikurkcu, C., Kocak, M.S., Calapoglu, M., Uren, M.C., Ceylan, O., Plantago lanceolata as a source of health-beneficial phytochemicals: Phenolics profile and antioxidant capacity. Food Bioscience, 34 (2020), 100536. https://doi.org/10.1016/j.fbio.2020.100536
-
Abate, L., Bachheti, R.K., Tadesse, M.G., Bachheti, A., Ethnobotanical uses, chemical constituents, and application of Plantago lanceolata L. Journal of Chemistry, 2022 (2022), 1–17. https://doi.org/10.1155/2022/1532031
-
Ranjbari, A., Nazer, M., A review of medicinal plants effective on wound healing in the western part of Iran based on ethnobotanical documents. Plant Biotechnology Persa, 6 (2024), 88–92. https://doi.org/10.61186/pbp.6.1.88
-
Abate, L., Bachheti, R.K., Tadesse, M.G., Bachheti, A., Ethnobotanical uses, chemical constituents, and application of Plantago lanceolata L. Journal of Chemistry, 2022 (2022), 1532031. https://doi.org/10.1155/2022/1532031
-
Jiru, T.M., Getahun, M., Antifungal activity of Plantago lanceolata and Sida ovata leaf extracts against dermatomycotic fungi. Evidence‐Based Complementary and Alternative Medicine, (2023), 9957892. https://doi.org/10.1155/2023/9957892
-
Laanet, P.R., Bragina, O., Jõul, P., Vaher, M., Plantago major and Plantago lanceolata Exhibit Antioxidant and Borrelia burgdorferi Inhibiting Activities. International Journal of Molecular Sciences, 25 (2024), 7112. https://doi.org/10.3390/ijms25137112
-
Murat Altuner, E., Canlı, K., Akata, I., Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. Journal of Pure and Applied Microbiology, 8 (2014).
-
Benek, A., Canlı, K., Murat Altuner, E., Antimicrobial and antioxidant activities of some mosses. Anatolian Bryology, 9 (2023), 42–49. https://doi.org/10.26672/anatolianbryology.1300126
-
Andrews, J.M., BSAC standardized disc susceptibility testing method (version 6). Journal of Antimicrobial Chemotherapy, 60 (2007), 20–41. https://doi.org/10.1093/jac/dkm110
-
Moniharapon, E., Hashinaga, F., Antimicrobial activity of Atung (Parinarium glaberrimum Hassk) fruit extract. Pakistan Journal of Biological Sciences, 7 (2004), 1057–1061. https://doi.org/10.3923/pjbs.2004.1057.1061
-
Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., Capita, R., Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology (Basel), 11 (2021), 46. https://doi.org/10.3390/biology11010046
-
Krishnan, R., Arumugam, V., Vasaviah, S.K., The MIC and MBC of silver nanoparticles against Enterococcus faecalis - A facultative anaerobe. Journal of Nanomedicine & Nanotechnology, 6 (2015), 285. http://dx.doi.org/10.4172/2157-7439.1000285
-
Benek, A., Determination of the moss flora of Izmir Bozdaglar range and investigation of the biological activities of some samples, PhD Thesis, Kastamonu University, Kastamonu, Turkey, 2024.
-
Benek, A., Turu, D., Canlı, K., Determination of biological activity and biochemical content of ethanol extract from fruiting body of Tricholoma bufonium (Pers.) Gillet. Journal of Fungi, 10 (2024), 761. https://doi.org/10.3390/jof10110761
-
Kosakowska, O., Węglarz, Z., Pióro-Jabrucka, E., Przybył, J.L., Kraśniewska, K., Gniewosz, M., Bączek, K., Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules, 26 (2021), 988. https://doi.org/10.3390/molecules26040988
-
Kaurinovic, B., Popovic, M., Vlaisavljevic, S., Trivic, S., Antioxidant capacity of Ocimum basilicum L. and Origanum vulgare L. extracts. Molecules, 16 (2011), 7401–7414. https://doi.org/10.3390/molecules16097401
-
Canlı, K., Bozyel, M.E., Turu, D., Benek, A., Şimşek, O., Murat Altuner, E., Biochemical, antioxidant properties and antimicrobial activity of steno-endemic Origanum onites. Microorganisms, 11 (2023), 1987.
https://doi.org/10.3390/microorganisms11081987
-
Chen, Z., Bertin, R., Froldi, G., EC₅₀ estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry, 138 (2013), 414–420. https://doi.org/10.1016/j.foodchem.2012.11.001
-
Ganesan, T., Subban, M., Christopher Leslee, D.B., Kuppannan, S.B., Seedevi, P., Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conversion and Biorefinery, 14 (2024), 14547–14558. https://doi.org/10.1007/s13399-022-03576-w
-
Pleyerová, I., Hamet, J., Konrádová, H., Lipavská, H., Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else?. Planta, 256 (2022), 13. https://doi.org/10.1007/s00425-022-03925-z
-
Rahman, Md. M., Rahaman, Md. S., Islam, Md. R., Hossain, Md. E., Mannan Mithi, F., Ahmed, M., Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties. Antibiotics, 10 (2021), 1076. https://doi.org/10.3390/antibiotics10091076
-
Fayera, S., Babu, G.N., Dekebo, A., Bogale, Y., Phytochemical investigation and antimicrobial study of leaf extract of Plantago lanceolata. Natural Products Chemistry & Research, 6 (2018), 0311. https://doi.org/10.4172/2329-6836.1000311
-
Rahamouz-Haghighi, S., Kh, B., Mohsen-Pour, N., Sharafi, A., In vitro evaluation of cytotoxicity and antibacterial activities of ribwort plantain (Plantago lanceolata L.) root fractions and phytochemical analysis by gas chromatography-mass spectrometry. Archives of Razi Institute, 77 (2022), 2131. https://doi.org/10.22092/ARI.2022.358045.2143
-
Zhakipbekov, K., Turgumbayeva, A., Issayeva, R., Kipchakbayeva, A., Kadyrbayeva, G., Tleubayeva, M., et al., Antimicrobial and other biomedical properties of extracts from Plantago major, Plantaginaceae. Pharmaceuticals, 16 (2023), 1092. https://doi.org/10.3390/ph16081092
-
Kim, H., Cha, E., Ham, S., Park, J., Nam, S., Kwon, H., Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor‐mediated quorum sensing. Biotechnology and Bioengineering, 118 (2021), 82–93. https://doi.org/10.1002/bit.27552
-
Bouali, A., Spissu, Y., Barberis, A., Fadda, A., Azara, E., Orrù, G., Ouarda, H.E. F., Phytochemical evaluation and exploration of some biological activities of aqueous and ethanolic extracts of two species of the genus Plantago L. PLos One, 19 (2024), e0298518. https://doi.org/10.1371/journal.pone.0298518
-
Amer, F., Algabar, A., Abdalameer Baqer, B., Sawsan, A., Authman, H., The Lepidoptera Research Foundation. Journal of Research on Lepidoptera, 50 (2019), 50–62.
-
Akbalık, C., Kireçci, O.A., Fırat, M., Şahin, İ., Çelikezen, F.Ç., Bitlis yöresinde yetişen Plantago lanceolata (yılan otu) bitkisinin antioksidan ve antimikrobiyal özelliklerinin araştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10 (2021), 287–295. https://doi.org/10.17798/bitlisfen.827636
-
Sanna, F., Piluzza, G., Campesi, G., Molinu, M. G., Re, G. A., Sulas, L., Antioxidant contents in a Mediterranean population of Plantago lanceolata L. exploited for quarry reclamation interventions. Plants, 11 (2022), 791. https://doi.org/10.3390/plants11060791
-
Rahamouz-Haghighi, S., Sharafi, A., Bagheri, K., In vitro organogenesis from transformed root cultures of Plantago lanceolata and phytochemical analysis by HPLC and GC-MS. Journal of BioScience and Biotechnology, 10 (2021), 87–97.
-
Yuan, Q., Xie, F., Huang, W., Hu, M., Yan, Q., Chen, Z., The review of alpha‐linolenic acid: Sources, metabolism, and pharmacology. Phytotherapy Research, 36 (2022), 164–188. https://doi.org/10.1002/ptr.7295
-
Joujou, F.M., El Darra, N., Rajha, H.N., Sokhn, E.S., Alwan, N., Evaluation of synergistic/antagonistic antibacterial activities of fatty oils from apricot, date, grape, and black seeds. Scientific Reports, 14 (2024), 6532. https://doi.org/10.1038/s41598-024-54850-y
-
Maheswari, B.U., Kalaiselvi, G., Exploring neophytadiene from Ampelocissus araneosa: A molecular docking approach to inhibit biofilm formation in Staphylococcus aureus. Uttar Pradesh Journal of Zoology, 45 (2024), 59–70. https://doi.org/10.56557/upjoz/2024/v45i33875
-
Pol, M., Schmidtke, K., Lewandowska, S., Plantago lanceolata–An overview of its agronomically and healing valuable features. Open agriculture, 6 (2021), 479-488. https://doi.org/10.1515/opag-2021-0035
-
Pol, M., Potterat, O., Tröber, F., Lewandowska, S., Schmidtke, K., Rooting patterns and aucubin content in Plantago lanceolata. Agriculture, 14 (2024), 1352. https://doi.org/10.3390/agriculture14081352
Investigation of Plantago lanceolata L.: a multidimensional study on its biochemical profiling, antioxidant capacity, and biological activities
Year 2025,
Volume: 34 Issue: 1, 76 - 103, 20.06.2025
Melike Ersin
,
Elif Gönül
,
Ezginur Duman
,
Gizem Gül
,
Dilay Turu
,
Atakan Benek
,
Kerem Canlı
Abstract
Plantago lanceolata L. is a medicinal and aromatic plant recognized for its antimicrobial and antioxidant effects. This research focused on evaluating its biological activity, antioxidant capacity, and volatile compound composition through Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The extract’s effects on biofilms formed by pathogenic bacteria were evaluated, showing significant biofilm inhibition and disruption. The antimicrobial activity was assessed based on minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The extract exhibited strong effects against Staphylococcus aureus MRSA, Streptococcus mutans, and S. aureus MRSA+MDR strains. The antioxidant potential was assessed through the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical assay, demonstrating a notable ability to scavenge free radicals. These findings suggest that P. lanceolata could serve as a protective or supportive agent against diseases associated with oxidative stress. GC-MS analysis identified the volatile components, with high concentrations of fatty acid derivatives such as linolenic acid and hexadecenoic acid. The study demonstrated that P. lanceolata possesses notable antibiofilm, antimicrobial, and antioxidant properties, making it a valuable natural resource. Owing to its bioactive compounds, this species exhibits significant potential for applications in the pharmaceutical, food, and cosmetic industries. It may also function as an important phytochemical in the drug developers' search for resources. Further research is required to expand its potential applications and prove its clinical efficacy.
Supporting Institution
Supported by Tübitak 2209-A project.
Project Number
1919B012320500
Thanks
I would like to express my gratitude to the TÜBİTAK 2209-A program for its support in funding this research project.
References
-
Flint, H.J., Why Gut Microbes Matter. Springer International Publishing: Aberdeen, UK, 2020. https://doi.org/10.1007/978-3-030-43246-1
-
Soni, J., Sinha, S., Pandey, R., Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Frontiers in Microbiology, 15 (2024). https://doi.org/10.3389/fmicb.2024.1370818
-
Panthee, B., Gyawali, S., Panthee, P., Techato, K., Environmental and Human Microbiome for Health. Life, 12 (2022). https://doi.org/10.3390/life12030456
-
Ryan, M.P., Sevjahova, L., Gorman, R., White, S., The Emergence of the Genus Comamonas as Important Opportunistic Pathogens. Pathogens, 11 (2022), 1032. https://doi.org/10.3390/pathogens11091032
-
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., Osek, J., Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11 (2022), 1079. https://doi.org/10.3390/antibiotics11081079
-
Zhang, F., Cheng, W., The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics, 11 (2022), 1215. https://doi.org/10.3390/antibiotics11091215
-
WHO, WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health, WHO: Geneva, 2014. https://www.who.int/southeastasia/news/detail/30-04-2014-who-s-first-global-report-on-antibiotic-resistance-reveals-serious-worldwide-threat-to-public-health.
-
Canlı, K., Yetgin, A., Benek, A., Bozyel, M.E., Murat Altuner, E., In Vitro Antimicrobial Activity Screening of Ethanol Extract of Lavandula stoechas and Investigation of Its Biochemical Composition. Advances in Pharmacological Sciences, (2019). https://doi.org/10.1155/2019/3201458
-
Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., Salamat, M.K.F., Baloch, Z., Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11(2018), 1645–1658. http://dx.doi.org/10.2147/IDR.S173867
-
Centers for Disease Control and Prevention (CDC), Antibiotic Resistance Threats in the United States. CDC: Atlanta, Georgia, 2019. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html
-
Giacomini, E., Perrone, V., Alessandrini, D., Paoli, D., Nappi, C., Degli Esposti, L., Evidence of Antibiotic Resistance from Population-Based Studies: A Narrative Review. Infection and Drug Resistance, 14 (2021). http://doi.org/10.2147/IDR.S289741
-
Baran, A., Kwiatkowska, A., Potocki, L., Antibiotics and Bacterial Resistance—A Short Story of an Endless Arms Race. International Journal of Molecular Sciences, 24 (2023), 5777. https://doi.org/10.3390/ijms24065777
-
Breijyeh, Z., Jubeh, B., Karaman, R., Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 25 (2020), 1340. https://doi.org/10.3390/molecules25061340
-
Canlı, K., Turu, D., Benek, A., Bozyel, M.E., Şimşek, Ö., Altuner, E.M., Biochemical and Antioxidant Properties as well as Antimicrobial and Antibiofilm Activities of Allium scorodoprasum subsp. jajlae (Vved.) Stearn. Current Issues in Molecular Biology, 45 (2023), 4970–4984. https://doi.org/10.3390/cimb45060316
-
Bailly, C., Traditional uses, pharmacology and phytochemistry of the medicinal plant Flueggea virosa (Roxb. ex Willd.) Royle. Future Pharmacology, 4 (2024), 77–102. https://doi.org/10.3390/futurepharmacol4010007
-
Yazarlu, O., Iranshahi, M., Kashani, H.R.K., Reshadat, S., Habtemariam, S., Iranshahy, M., Hasanpour, M., Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review. Pharmacological Research, 174 (2021), 105841. https://doi.org/10.1016/j.phrs.2021.105841
-
Salmerón-Manzano, E., Garrido-Cardenas, J.A., Manzano-Agugliaro, F., Worldwide research trends on medicinal plants. International Journal of Environmental Research and Public Health, 17 (2020), 3376. https://doi.org/10.3390/ijerph17103376
-
Angelini, P., Plant-derived antimicrobials and their crucial role in combating antimicrobial resistance. Antibiotics, 13 (2024), 746. https://doi.org/10.3390/antibiotics13080746
-
Turu, D., Bozyel, M.E., Candan, K., Yakan, M.A., Benek, A., Canlı, K., In vitro antimicrobial and antioxidant activities of Pyracantha coccinea fruits ethanol extract. International Journal of Academic Multidisciplinary Research, 4 (2020).
-
Xu, Z., Ullah, N., Duan, Y., Hou, Z., Liu, A., Xu, L., Editorial: Plant secondary metabolites and their effects on environmental adaptation based on functional genomics. Frontiers in Genetics, 14 (2023). https://doi.org/10.3389/fgene.2023.1211639
-
Bozkurt, S.D., Turu, D., Gül, G., Yaman, C., Benek, A., Canlı, K., Determination of antioxidant activity and biochemical content of Homalothecium philippeanum (Spruce) Schimp. Anatolian Bryology, 10 (2024), 169–178. https://doi.org/10.26672/anatolianbryology.1576833
-
Ji, X., Hou, C., Guo, X., Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L. (Plantaginaceae): A review. International Journal of Biological Macromolecules, 135 (2019), 637–646. https://doi.org/10.1016/j.ijbiomac.2019.05.211
-
Kolak, U., Boğa, M., Uruşak, E.A., Ulubelen, A., Constituents of Plantago major subsp. intermedia with antioxidant and anticholinesterase capacities. Turkish Journal of Chemistry, (2011). https://doi.org/10.3906/kim-1102-990
-
Gonçalves, S., Romano, A., The medicinal potential of plants from the genus Plantago (Plantaginaceae). Industrial Crops and Products, 83 (2016), 213–226. https://doi.org/10.1016/j.indcrop.2015.12.038
-
Pol, M., Schmidtke, K., Lewandowska, S., Plantago lanceolata – An overview of its agronomically and healing valuable features. Open Agriculture, 6 (2021), 479–488. https://doi.org/10.1515/opag-2021-0035
-
Bahadori, M.B., Sarikurkcu, C., Kocak, M.S., Calapoglu, M., Uren, M.C., Ceylan, O., Plantago lanceolata as a source of health-beneficial phytochemicals: Phenolics profile and antioxidant capacity. Food Bioscience, 34 (2020), 100536. https://doi.org/10.1016/j.fbio.2020.100536
-
Abate, L., Bachheti, R.K., Tadesse, M.G., Bachheti, A., Ethnobotanical uses, chemical constituents, and application of Plantago lanceolata L. Journal of Chemistry, 2022 (2022), 1–17. https://doi.org/10.1155/2022/1532031
-
Ranjbari, A., Nazer, M., A review of medicinal plants effective on wound healing in the western part of Iran based on ethnobotanical documents. Plant Biotechnology Persa, 6 (2024), 88–92. https://doi.org/10.61186/pbp.6.1.88
-
Abate, L., Bachheti, R.K., Tadesse, M.G., Bachheti, A., Ethnobotanical uses, chemical constituents, and application of Plantago lanceolata L. Journal of Chemistry, 2022 (2022), 1532031. https://doi.org/10.1155/2022/1532031
-
Jiru, T.M., Getahun, M., Antifungal activity of Plantago lanceolata and Sida ovata leaf extracts against dermatomycotic fungi. Evidence‐Based Complementary and Alternative Medicine, (2023), 9957892. https://doi.org/10.1155/2023/9957892
-
Laanet, P.R., Bragina, O., Jõul, P., Vaher, M., Plantago major and Plantago lanceolata Exhibit Antioxidant and Borrelia burgdorferi Inhibiting Activities. International Journal of Molecular Sciences, 25 (2024), 7112. https://doi.org/10.3390/ijms25137112
-
Murat Altuner, E., Canlı, K., Akata, I., Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. Journal of Pure and Applied Microbiology, 8 (2014).
-
Benek, A., Canlı, K., Murat Altuner, E., Antimicrobial and antioxidant activities of some mosses. Anatolian Bryology, 9 (2023), 42–49. https://doi.org/10.26672/anatolianbryology.1300126
-
Andrews, J.M., BSAC standardized disc susceptibility testing method (version 6). Journal of Antimicrobial Chemotherapy, 60 (2007), 20–41. https://doi.org/10.1093/jac/dkm110
-
Moniharapon, E., Hashinaga, F., Antimicrobial activity of Atung (Parinarium glaberrimum Hassk) fruit extract. Pakistan Journal of Biological Sciences, 7 (2004), 1057–1061. https://doi.org/10.3923/pjbs.2004.1057.1061
-
Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., Capita, R., Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology (Basel), 11 (2021), 46. https://doi.org/10.3390/biology11010046
-
Krishnan, R., Arumugam, V., Vasaviah, S.K., The MIC and MBC of silver nanoparticles against Enterococcus faecalis - A facultative anaerobe. Journal of Nanomedicine & Nanotechnology, 6 (2015), 285. http://dx.doi.org/10.4172/2157-7439.1000285
-
Benek, A., Determination of the moss flora of Izmir Bozdaglar range and investigation of the biological activities of some samples, PhD Thesis, Kastamonu University, Kastamonu, Turkey, 2024.
-
Benek, A., Turu, D., Canlı, K., Determination of biological activity and biochemical content of ethanol extract from fruiting body of Tricholoma bufonium (Pers.) Gillet. Journal of Fungi, 10 (2024), 761. https://doi.org/10.3390/jof10110761
-
Kosakowska, O., Węglarz, Z., Pióro-Jabrucka, E., Przybył, J.L., Kraśniewska, K., Gniewosz, M., Bączek, K., Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules, 26 (2021), 988. https://doi.org/10.3390/molecules26040988
-
Kaurinovic, B., Popovic, M., Vlaisavljevic, S., Trivic, S., Antioxidant capacity of Ocimum basilicum L. and Origanum vulgare L. extracts. Molecules, 16 (2011), 7401–7414. https://doi.org/10.3390/molecules16097401
-
Canlı, K., Bozyel, M.E., Turu, D., Benek, A., Şimşek, O., Murat Altuner, E., Biochemical, antioxidant properties and antimicrobial activity of steno-endemic Origanum onites. Microorganisms, 11 (2023), 1987.
https://doi.org/10.3390/microorganisms11081987
-
Chen, Z., Bertin, R., Froldi, G., EC₅₀ estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry, 138 (2013), 414–420. https://doi.org/10.1016/j.foodchem.2012.11.001
-
Ganesan, T., Subban, M., Christopher Leslee, D.B., Kuppannan, S.B., Seedevi, P., Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conversion and Biorefinery, 14 (2024), 14547–14558. https://doi.org/10.1007/s13399-022-03576-w
-
Pleyerová, I., Hamet, J., Konrádová, H., Lipavská, H., Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else?. Planta, 256 (2022), 13. https://doi.org/10.1007/s00425-022-03925-z
-
Rahman, Md. M., Rahaman, Md. S., Islam, Md. R., Hossain, Md. E., Mannan Mithi, F., Ahmed, M., Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties. Antibiotics, 10 (2021), 1076. https://doi.org/10.3390/antibiotics10091076
-
Fayera, S., Babu, G.N., Dekebo, A., Bogale, Y., Phytochemical investigation and antimicrobial study of leaf extract of Plantago lanceolata. Natural Products Chemistry & Research, 6 (2018), 0311. https://doi.org/10.4172/2329-6836.1000311
-
Rahamouz-Haghighi, S., Kh, B., Mohsen-Pour, N., Sharafi, A., In vitro evaluation of cytotoxicity and antibacterial activities of ribwort plantain (Plantago lanceolata L.) root fractions and phytochemical analysis by gas chromatography-mass spectrometry. Archives of Razi Institute, 77 (2022), 2131. https://doi.org/10.22092/ARI.2022.358045.2143
-
Zhakipbekov, K., Turgumbayeva, A., Issayeva, R., Kipchakbayeva, A., Kadyrbayeva, G., Tleubayeva, M., et al., Antimicrobial and other biomedical properties of extracts from Plantago major, Plantaginaceae. Pharmaceuticals, 16 (2023), 1092. https://doi.org/10.3390/ph16081092
-
Kim, H., Cha, E., Ham, S., Park, J., Nam, S., Kwon, H., Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor‐mediated quorum sensing. Biotechnology and Bioengineering, 118 (2021), 82–93. https://doi.org/10.1002/bit.27552
-
Bouali, A., Spissu, Y., Barberis, A., Fadda, A., Azara, E., Orrù, G., Ouarda, H.E. F., Phytochemical evaluation and exploration of some biological activities of aqueous and ethanolic extracts of two species of the genus Plantago L. PLos One, 19 (2024), e0298518. https://doi.org/10.1371/journal.pone.0298518
-
Amer, F., Algabar, A., Abdalameer Baqer, B., Sawsan, A., Authman, H., The Lepidoptera Research Foundation. Journal of Research on Lepidoptera, 50 (2019), 50–62.
-
Akbalık, C., Kireçci, O.A., Fırat, M., Şahin, İ., Çelikezen, F.Ç., Bitlis yöresinde yetişen Plantago lanceolata (yılan otu) bitkisinin antioksidan ve antimikrobiyal özelliklerinin araştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10 (2021), 287–295. https://doi.org/10.17798/bitlisfen.827636
-
Sanna, F., Piluzza, G., Campesi, G., Molinu, M. G., Re, G. A., Sulas, L., Antioxidant contents in a Mediterranean population of Plantago lanceolata L. exploited for quarry reclamation interventions. Plants, 11 (2022), 791. https://doi.org/10.3390/plants11060791
-
Rahamouz-Haghighi, S., Sharafi, A., Bagheri, K., In vitro organogenesis from transformed root cultures of Plantago lanceolata and phytochemical analysis by HPLC and GC-MS. Journal of BioScience and Biotechnology, 10 (2021), 87–97.
-
Yuan, Q., Xie, F., Huang, W., Hu, M., Yan, Q., Chen, Z., The review of alpha‐linolenic acid: Sources, metabolism, and pharmacology. Phytotherapy Research, 36 (2022), 164–188. https://doi.org/10.1002/ptr.7295
-
Joujou, F.M., El Darra, N., Rajha, H.N., Sokhn, E.S., Alwan, N., Evaluation of synergistic/antagonistic antibacterial activities of fatty oils from apricot, date, grape, and black seeds. Scientific Reports, 14 (2024), 6532. https://doi.org/10.1038/s41598-024-54850-y
-
Maheswari, B.U., Kalaiselvi, G., Exploring neophytadiene from Ampelocissus araneosa: A molecular docking approach to inhibit biofilm formation in Staphylococcus aureus. Uttar Pradesh Journal of Zoology, 45 (2024), 59–70. https://doi.org/10.56557/upjoz/2024/v45i33875
-
Pol, M., Schmidtke, K., Lewandowska, S., Plantago lanceolata–An overview of its agronomically and healing valuable features. Open agriculture, 6 (2021), 479-488. https://doi.org/10.1515/opag-2021-0035
-
Pol, M., Potterat, O., Tröber, F., Lewandowska, S., Schmidtke, K., Rooting patterns and aucubin content in Plantago lanceolata. Agriculture, 14 (2024), 1352. https://doi.org/10.3390/agriculture14081352