Research Article
BibTex RIS Cite

Year 2025, Volume: 34 Issue: 1, 58 - 75, 20.06.2025
https://doi.org/10.53447/communc.1667669

Abstract

References

  • Achinas, S., Charalampogiannis, N., Euverink, G.J.W., A brief recap of microbial adhesion and biofilms. Applied Sciences, 9 (2019), 2801. doi.org/10.3390/app9142801
  • Donlan, R.M., Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8 (2002), 881-890. doi.org/10.3201/eid0809.020063
  • Du Toit, A., Bacterial architects build the biofilm structures. Nature Reviews Microbiology (2024), 187. doi.org/10.1038/s41579-024-01020-6
  • Dufrêne, Y.F., Viljoen, A., Binding strength of gram-positive bacterial adhesins. Frontiers in Microbiology, 11 (2020), 554551. doi.org/10.3389/fmicb.2020.01457
  • Feng, X., Wu, Q., Che, L., Ren, N., Analyzing the inhibitory effect of metabolic uncoupler on bacterial initial attachment and biofilm development and the underlying mechanism. Environmental Research, 185 (2020), 109390. doi.org/10.1016/j.envres.2020.109390
  • Joseph, R.L., Prosthetic joint infections: Bane of orthopaedists. Clinical Infectious Diseases, 36 (2004), 1157-1161. doi.org/10.1086/374554
  • Roy, R., Tiwari, M., Donelli, G., Tiwari, V., Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9 (2018), 522-554. doi.org/10.1080/21505594.2017.1313372
  • Samrot, A. V., Abubakar Mohamed, A., Faradjeva, E., Si Jie, L., Hooi Sze, C., Arif, A., ... & Kumar, S. S., Mechanisms and impact of biofilms and targeting of biofilms using bioactive compounds: A review. Medicina, 57 (2021), 839. doi.org/10.3390/medicina57080839
  • Markou, G., Georgakakis, D., Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88 (2011), 3389-3401. doi.org/10.1016/j.apenergy.2010.12.042
  • Pan, M., Lyu, T., Zhang, M., Zhang, H., Bi, L., Wang, L., Chen, J., Yao, C., Ali, J., Best, S., Ray, N., Pan, G., Synergistic recapturing of external and internal phosphorus for in situ eutrophication mitigation. Water, 12 (2019), 1-9. doi.org/10.3390/w12010002
  • Nie, L., Li, Y., Chen, S., Li, K., Huang, Y., Zhu, Y., Sun, Z., Zhank, J., He, Y., Wei, S., Biofilm nanofiber-coated separators for dendrite-free lithium metal anode and ultrahigh-rate lithium batteries. ACS Applied Materials & Interfaces, 11 (2019), 32373-32380. doi.org/10.1021/acsami.9b08656
  • Singh, R., Puri, A., Panda, B.P., Development of menaquinone-7 enriched nutraceutical: insights into medium engineering and process modeling. Journal of Food Science and Technology, 52 (2015), 5212-5219. doi.org/10.1007/s13197-014-1600-7
  • Zurnaci, M., Senturan, U. M., Sener, N., Gur, M., Altinoz, E., Sener, I., Altuner, E. M., Studies on antimicrobial, antibiofilm, efflux pump inhibiting, and ADMET properties of newly synthesised 1, 3, 4‐Thiadiazole derivatives. ChemistrySelect, 6 (2021), 12571-12581. doi.org/10.1002/slct.202103214
  • Mukherjee, S., Bassler, B.L., Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology, 17 (2019), 371-382. doi.org/10.1038/s41579-019-0186-5
  • Shome, S., Talukdar, A.D., Nath, R., Tewari, S., Curcumin-ZnO nanocomposite mediated inhibition of Pseudomonas aeruginosa biofilm and its mechanism of action. Journal of Drug Delivery Science and Technology, 81 (2023), 104301. doi.org/10.1016/j.jddst.2023.104301
  • Altuner, E.M., Akata, I., Antimicrobial activity of some macrofungi extracts. SAU Fen Bilimleri Dergisi, 14 (2010), 45-49. https://doi.org/10.16984/saufbed.31339
  • Fendoglu, B., Kuruuzum-Uz, A., Sohretoglu, D., Alkaloids obtained from fungi. Journal of Fungi, 9 (2018), 117-125. https://doi.org/10.30708/mantar.415589
  • Forland, D.T., Johnson, E., Tryggestad, A.M.A., Lyberg, T., Hetland, G., An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro. Cytokine, 49 (2010), 245-250. doi.org/10.1016/j.cyto.2009.09.002
  • Homer, J.A., Sperry, J., Mushroom-derived indole alkaloids. Journal of Natural Products, 80 (2017), 2178-2187. doi.org/10.1021/acs.jnatprod.7b00390
  • Ozturk, M., Tel-Cayan, G., Muhammad, A., Terzioglu, P., Duru, M.E., Mushrooms: A source of exciting bioactive compounds. Studies in Natural Products Chemistry, 45 (2015), 363−456. doi.org/10.1016/b978-0-444-63473-3.00010-1
  • Pommerville, J.C., Fundamentals of Microbiology. Burlington, Mass: Jones and Bartlett Publishers, 2014. ISBN: 9781284039652
  • Barros, L., Cruz, T., Baptista, P., Estevinho, L.M., Ferreira, I.C.F.R., Wild and commercial mushrooms as sources of nutrients and nutraceuticals. Food Chem Toxicol, 46 (2008), 2742-2747. doi.org/10.1016/j.fct.2008.04.030
  • Sohretoglu, D., Huang, S., Ganoderma lucidum polysaccharides as an anti-cancer agent. Anticancer Agents in Medicinal Chemistry, 18 (2018), 667-674. doi.org/10.2174/1871520617666171113121246
  • Alves, M.J., Ferreira, I.C., Lourenco, I., Costa, E., Martins, A., Pintado, M., Wild mushroom extracts as inhibitors of bacterial biofilm formation. Pathogens, 3 (2014), 667-679. doi.org/10.3390/pathogens3030667
  • Papetti, A., Signoreto, C., Spratt, D.A., Pratten, J., Lingström, P., Zaura, E., Ofek, I., Wilson, M., Pruzzog, C., Gazzania, G., Components in Lentinus edodes mushroom with anti-biofilm activity directed against bacteria involved in caries and gingivitis. Food & Function, 9 (2018), 3489-3499. doi.org/10.1039/c7fo01727h
  • Pavić, V., Kovač-Andrić, E., Ćorić, I., Rebić, S., Užarević, Z., Gvozdić, V., Antibacterial efficacy and characterization of silver nanoparticles synthesized via methanolic extract of Fomes fomentarius L. Fr. Molecules, 29 (2024), 3961. doi.org/10.3390/molecules29163961
  • Baldas, B., Altuner, E.M., The antimicrobial activity of apple cider vinegar and grape vinegar, which are used as a traditional surface disinfectant for fruits and vegetables. Communications Faculty of Sciences University of Ankara Series C Biology, 27 (2018), 1-10. doi.org/10.1501/commuc_0000000187
  • Hammer, K.A., Carson, C.F., Riley, T.V., Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86 (1999), 985-990. doi.org/10.1046/j.1365-2672.1999.00780.x
  • Salmon, S.A., Watts, J.L., Aarestrup, F.M., Pankey, J.W., Yancey Jr, R.J., Minimum inhibitory concentrations for selected antimicrobial agents against organisms isolated from the mammary glands of dairy heifers in New Zealand and Denmark. Journal of Dairy Science, 81 (1998), 570-578. doi.org/10.3168/jds.s0022-0302(98)75610-3
  • Norrby, S.R., Jonsson, M., Antibacterial activity of norfloxacin. Antimicrobial Agents and Chemotherapy, 23 (1983), 15-18. doi.org/10.1128/aac.23.1.15
  • Freeman, D.J., Falkiner, F.R., Keane, C.T., New method for detecting slime production by coagulase-negative staphylococci. Journal of Clinical Pathology, 42 (1989), 872-874. doi.org/10.1136/jcp.42.8.872
  • Ozturk, I., Yurtman, A.N., Erac, B., Gul-Yurtsever, S., Ermertcan, S., Hosgor Limoncu, M., In vitro effect of moxifloxacin and rifampicin on biofilm formation by clinical MRSA isolates. Bratislava Medical Journal, 115 (2014), 483-486. doi.org/10.4149/bll_2014_093
  • Karaca, B., Coleri Cihan, A., Akata, I., Altuner, E.M., Anti-biofilm and antimicrobial activities of five edible and medicinal macrofungi samples on some biofilm-producing multi-drug resistant Enterococcus strains. Turkish Journal of Agriculture-Food Science and Technology, 8 (2020), 69-80. doi:10.24925/turjaf.v8i1.69-80.2723
  • Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukic, S., Cirkovic, I., Ruzicka, F., Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115 (2007), 891-899. doi: 10.1111/1600-0463.2007
  • Temel, A., Erac, B., Bacterial biofilms: detection methods and their role in antibiotic resistance. Turkish Journal of Microbiology, 48 (2018), 1-13. doi.org/10.5222/tmcd.2018.001
  • Beech, I.B., Smith, J.R., Steele, A.A., Penegar, I., Campbell, S.A., The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids and Surfaces B: Biointerfaces, 23 (2002), 231-247. doi.org/10.1016/s0927-7765(01)00233-8
  • Gomes, L.C., Mergulhão, F.J., SEM analysis of surface impact on biofilm antibiotic treatment. Scanning, (2017), 2960194. doi: 10.1155/2017/2960194
  • R Core Team., R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed 2025).
  • Goradel, N.H., Eghbal, M.A., Darabi, M., Roshangar, L., Asadi, M., Zarghami, N., Nouri, M., Improvement of liver cell therapy in rats by dietary stearic acid. Iranian Biomedical Journal, 20 (2016), 217-222. http://dx.doi.org/10.7508/ibj.2016.04.005
  • Khalil, M.H., Marcelletti, J.F., Katz, L.R., Katz, D.H., Pope, L.E., Topical application of docosanol‐or stearic acid‐containing creams reduces severity of phenol burn wounds in mice. Contact dermatitis, 43 (2000), 79-81. doi.org/10.1034/j.1600-0536.2000.043002079.x
  • Bentrad, N., Gaceb-Terrak, R., Rahmania, F., Identification and evaluation of antibacterial agents present in lipophilic fractions isolated from sub-products of Phoenix dactilyfera. Natural product research, 31 (2017), 2544-2548. doi.org/10.1080/14786419.2017.1314282
  • Kumar, P., Lee, J.H., Beyenal, H., Lee, J., Fatty acids as antibiofilm and antivirulence agents. Trends in microbiology, 28 (2020), 753-768 doi.org/10.1016/j.tim.2020.03.014
  • Prasath, K.G., Tharani, H., Kumar, M.S., Pandian, S.K., Palmitic acid inhibits the virulence factors of Candida tropicalis: Biofilms, cell surface hydrophobicity, ergosterol biosynthesis, and enzymatic activity. Frontiers in Microbiology, 11 (2020), 864. doi.org/10.3389/fmicb.2020.00864
  • Xie, Y., Peng, Q., Ji, Y., Xie, A., Yang, L., Mu, S., Li, Z., He, T., Xiao, Y., Zhao, J., Zhang, Q. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Frontiers in microbiology, 12 (2021), 645484. doi.org/10.3389/fmicb.2021.645484
  • El Demerdash, E., Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicology and applied pharmacology, 254 (2011), 238-244. doi.org/10.1016/j.taap.2011.04.016
  • Janani S.R., Singaravadivel, K., Screening of phytochemical and GC-MS analysis of some bioactive constituents of Asparagus racemosus. International Journal of PharmTech Research, 6 (2014), 428-432.
  • Mantawy, E.M., Tadros, M.G., Awad, A.S., Hassan, D.A., El-Demerdash, E., Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicology and applied pharmacology, 258 (2012), 134-144. doi.org/10.1016/j.taap.2011.10.016
  • Roopa, M. S., Shubharani, R., Rhetso, T., Sivaram, V., Comparative analysis of phytochemical constituents, free radical scavenging activity and GC-MS analysis of leaf and flower extract of Tithonia diversifolia (Hemsl.) A. Gray. International Journal of Pharmaceutical Sciences & Research, 11 (2020), 5081-5090. doi.org/10.1186/s43094-020-00100-7
  • Wang, Y. N., Wang, H. X., Shen, Z. J., Zhao, L. L., Clarke, S. R., Sun, J. H., Du, Y.Y., Shi, G. L., Methyl palmitate, an acaricidal compound occurring in green walnut husks. Journal of Economic Entomology, 102 (2009), 196-202. doi.org/10.1603/029.102.0128
  • Irez, E.I., Hacıoğlu Doğru, N., Demir N., Fomes fomentarius (L.) Fr. extracts as sources of an antioxidant, antimicrobial and antibiofilm agents. Biologica Nyssana, 12 (2021), 55-62. doi.org/10.5281/zenodo.5523017
  • Dokhaharani, S.C., Ghobad-Nejad, M., Farazmand, A., Moghimi, H., Rahmani, H., Evaluation of antibacterial activity of methanolic extract of the polypore fungus Fomes fomentarius (Polyporaceae) against Staphylococcus aureus. Current Medical Mycology, 4 (2018), 152-153. doi.org/10.1007/s12223-021-00884-y

Antibiofilm effects of Fomes fomentarius (L.) Fr. extracts on some microorganisms

Year 2025, Volume: 34 Issue: 1, 58 - 75, 20.06.2025
https://doi.org/10.53447/communc.1667669

Abstract

Biofilms, structured microbial communities, are a significant focus of research due to their nature as they provide protection against environmental stressors but also cause substantial medical and industrial problems. These communities, embedded in an extracellular matrix, are implicated in persistent infections, corrosion in infrastructure, and food spoilage, while also holding potential in beneficial applications like biofuel production and wastewater treatment. Consequently, there is growing interest in modulating biofilm formation, with natural products emerging as promising candidates. This study assessed the impact of Fomes fomentarius (L.) Fr. extracts on some microorganisms. The impact of ethanol (EtOH) and chloroform extracts on biofilm formation was evaluated using crystal violet staining, with SEM and AFM imaging used for confirmation. A comprehensive chemical analysis of the extracts was performed via gas chromatographymass spectrometry (GC/MS). The EtOH extract was found to contain compounds such as stearic acid and oleic acid, while the chloroform extract contained compounds like methyl stearate and octadecadienoic acid. The key finding was that the F. fomentariusEtOH extract significantly inhibited biofilm formation in S. aureus MRSA between 30.90-47.06%. The chloroform extract, however, showed no discernible effect on biofilm development. The effectiveness of the EtOH extract was compared using Halamid® as a positive control. Inhibition was observed for the S. aureus MRSA strain, as 54.21% with 125 μg/mL of the Halamid® concentration. This suggests that F. fomentarius extracts may offer a natural source of compounds with the potential to control and manage biofilm formation.

References

  • Achinas, S., Charalampogiannis, N., Euverink, G.J.W., A brief recap of microbial adhesion and biofilms. Applied Sciences, 9 (2019), 2801. doi.org/10.3390/app9142801
  • Donlan, R.M., Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8 (2002), 881-890. doi.org/10.3201/eid0809.020063
  • Du Toit, A., Bacterial architects build the biofilm structures. Nature Reviews Microbiology (2024), 187. doi.org/10.1038/s41579-024-01020-6
  • Dufrêne, Y.F., Viljoen, A., Binding strength of gram-positive bacterial adhesins. Frontiers in Microbiology, 11 (2020), 554551. doi.org/10.3389/fmicb.2020.01457
  • Feng, X., Wu, Q., Che, L., Ren, N., Analyzing the inhibitory effect of metabolic uncoupler on bacterial initial attachment and biofilm development and the underlying mechanism. Environmental Research, 185 (2020), 109390. doi.org/10.1016/j.envres.2020.109390
  • Joseph, R.L., Prosthetic joint infections: Bane of orthopaedists. Clinical Infectious Diseases, 36 (2004), 1157-1161. doi.org/10.1086/374554
  • Roy, R., Tiwari, M., Donelli, G., Tiwari, V., Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9 (2018), 522-554. doi.org/10.1080/21505594.2017.1313372
  • Samrot, A. V., Abubakar Mohamed, A., Faradjeva, E., Si Jie, L., Hooi Sze, C., Arif, A., ... & Kumar, S. S., Mechanisms and impact of biofilms and targeting of biofilms using bioactive compounds: A review. Medicina, 57 (2021), 839. doi.org/10.3390/medicina57080839
  • Markou, G., Georgakakis, D., Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88 (2011), 3389-3401. doi.org/10.1016/j.apenergy.2010.12.042
  • Pan, M., Lyu, T., Zhang, M., Zhang, H., Bi, L., Wang, L., Chen, J., Yao, C., Ali, J., Best, S., Ray, N., Pan, G., Synergistic recapturing of external and internal phosphorus for in situ eutrophication mitigation. Water, 12 (2019), 1-9. doi.org/10.3390/w12010002
  • Nie, L., Li, Y., Chen, S., Li, K., Huang, Y., Zhu, Y., Sun, Z., Zhank, J., He, Y., Wei, S., Biofilm nanofiber-coated separators for dendrite-free lithium metal anode and ultrahigh-rate lithium batteries. ACS Applied Materials & Interfaces, 11 (2019), 32373-32380. doi.org/10.1021/acsami.9b08656
  • Singh, R., Puri, A., Panda, B.P., Development of menaquinone-7 enriched nutraceutical: insights into medium engineering and process modeling. Journal of Food Science and Technology, 52 (2015), 5212-5219. doi.org/10.1007/s13197-014-1600-7
  • Zurnaci, M., Senturan, U. M., Sener, N., Gur, M., Altinoz, E., Sener, I., Altuner, E. M., Studies on antimicrobial, antibiofilm, efflux pump inhibiting, and ADMET properties of newly synthesised 1, 3, 4‐Thiadiazole derivatives. ChemistrySelect, 6 (2021), 12571-12581. doi.org/10.1002/slct.202103214
  • Mukherjee, S., Bassler, B.L., Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology, 17 (2019), 371-382. doi.org/10.1038/s41579-019-0186-5
  • Shome, S., Talukdar, A.D., Nath, R., Tewari, S., Curcumin-ZnO nanocomposite mediated inhibition of Pseudomonas aeruginosa biofilm and its mechanism of action. Journal of Drug Delivery Science and Technology, 81 (2023), 104301. doi.org/10.1016/j.jddst.2023.104301
  • Altuner, E.M., Akata, I., Antimicrobial activity of some macrofungi extracts. SAU Fen Bilimleri Dergisi, 14 (2010), 45-49. https://doi.org/10.16984/saufbed.31339
  • Fendoglu, B., Kuruuzum-Uz, A., Sohretoglu, D., Alkaloids obtained from fungi. Journal of Fungi, 9 (2018), 117-125. https://doi.org/10.30708/mantar.415589
  • Forland, D.T., Johnson, E., Tryggestad, A.M.A., Lyberg, T., Hetland, G., An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro. Cytokine, 49 (2010), 245-250. doi.org/10.1016/j.cyto.2009.09.002
  • Homer, J.A., Sperry, J., Mushroom-derived indole alkaloids. Journal of Natural Products, 80 (2017), 2178-2187. doi.org/10.1021/acs.jnatprod.7b00390
  • Ozturk, M., Tel-Cayan, G., Muhammad, A., Terzioglu, P., Duru, M.E., Mushrooms: A source of exciting bioactive compounds. Studies in Natural Products Chemistry, 45 (2015), 363−456. doi.org/10.1016/b978-0-444-63473-3.00010-1
  • Pommerville, J.C., Fundamentals of Microbiology. Burlington, Mass: Jones and Bartlett Publishers, 2014. ISBN: 9781284039652
  • Barros, L., Cruz, T., Baptista, P., Estevinho, L.M., Ferreira, I.C.F.R., Wild and commercial mushrooms as sources of nutrients and nutraceuticals. Food Chem Toxicol, 46 (2008), 2742-2747. doi.org/10.1016/j.fct.2008.04.030
  • Sohretoglu, D., Huang, S., Ganoderma lucidum polysaccharides as an anti-cancer agent. Anticancer Agents in Medicinal Chemistry, 18 (2018), 667-674. doi.org/10.2174/1871520617666171113121246
  • Alves, M.J., Ferreira, I.C., Lourenco, I., Costa, E., Martins, A., Pintado, M., Wild mushroom extracts as inhibitors of bacterial biofilm formation. Pathogens, 3 (2014), 667-679. doi.org/10.3390/pathogens3030667
  • Papetti, A., Signoreto, C., Spratt, D.A., Pratten, J., Lingström, P., Zaura, E., Ofek, I., Wilson, M., Pruzzog, C., Gazzania, G., Components in Lentinus edodes mushroom with anti-biofilm activity directed against bacteria involved in caries and gingivitis. Food & Function, 9 (2018), 3489-3499. doi.org/10.1039/c7fo01727h
  • Pavić, V., Kovač-Andrić, E., Ćorić, I., Rebić, S., Užarević, Z., Gvozdić, V., Antibacterial efficacy and characterization of silver nanoparticles synthesized via methanolic extract of Fomes fomentarius L. Fr. Molecules, 29 (2024), 3961. doi.org/10.3390/molecules29163961
  • Baldas, B., Altuner, E.M., The antimicrobial activity of apple cider vinegar and grape vinegar, which are used as a traditional surface disinfectant for fruits and vegetables. Communications Faculty of Sciences University of Ankara Series C Biology, 27 (2018), 1-10. doi.org/10.1501/commuc_0000000187
  • Hammer, K.A., Carson, C.F., Riley, T.V., Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86 (1999), 985-990. doi.org/10.1046/j.1365-2672.1999.00780.x
  • Salmon, S.A., Watts, J.L., Aarestrup, F.M., Pankey, J.W., Yancey Jr, R.J., Minimum inhibitory concentrations for selected antimicrobial agents against organisms isolated from the mammary glands of dairy heifers in New Zealand and Denmark. Journal of Dairy Science, 81 (1998), 570-578. doi.org/10.3168/jds.s0022-0302(98)75610-3
  • Norrby, S.R., Jonsson, M., Antibacterial activity of norfloxacin. Antimicrobial Agents and Chemotherapy, 23 (1983), 15-18. doi.org/10.1128/aac.23.1.15
  • Freeman, D.J., Falkiner, F.R., Keane, C.T., New method for detecting slime production by coagulase-negative staphylococci. Journal of Clinical Pathology, 42 (1989), 872-874. doi.org/10.1136/jcp.42.8.872
  • Ozturk, I., Yurtman, A.N., Erac, B., Gul-Yurtsever, S., Ermertcan, S., Hosgor Limoncu, M., In vitro effect of moxifloxacin and rifampicin on biofilm formation by clinical MRSA isolates. Bratislava Medical Journal, 115 (2014), 483-486. doi.org/10.4149/bll_2014_093
  • Karaca, B., Coleri Cihan, A., Akata, I., Altuner, E.M., Anti-biofilm and antimicrobial activities of five edible and medicinal macrofungi samples on some biofilm-producing multi-drug resistant Enterococcus strains. Turkish Journal of Agriculture-Food Science and Technology, 8 (2020), 69-80. doi:10.24925/turjaf.v8i1.69-80.2723
  • Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukic, S., Cirkovic, I., Ruzicka, F., Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115 (2007), 891-899. doi: 10.1111/1600-0463.2007
  • Temel, A., Erac, B., Bacterial biofilms: detection methods and their role in antibiotic resistance. Turkish Journal of Microbiology, 48 (2018), 1-13. doi.org/10.5222/tmcd.2018.001
  • Beech, I.B., Smith, J.R., Steele, A.A., Penegar, I., Campbell, S.A., The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids and Surfaces B: Biointerfaces, 23 (2002), 231-247. doi.org/10.1016/s0927-7765(01)00233-8
  • Gomes, L.C., Mergulhão, F.J., SEM analysis of surface impact on biofilm antibiotic treatment. Scanning, (2017), 2960194. doi: 10.1155/2017/2960194
  • R Core Team., R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed 2025).
  • Goradel, N.H., Eghbal, M.A., Darabi, M., Roshangar, L., Asadi, M., Zarghami, N., Nouri, M., Improvement of liver cell therapy in rats by dietary stearic acid. Iranian Biomedical Journal, 20 (2016), 217-222. http://dx.doi.org/10.7508/ibj.2016.04.005
  • Khalil, M.H., Marcelletti, J.F., Katz, L.R., Katz, D.H., Pope, L.E., Topical application of docosanol‐or stearic acid‐containing creams reduces severity of phenol burn wounds in mice. Contact dermatitis, 43 (2000), 79-81. doi.org/10.1034/j.1600-0536.2000.043002079.x
  • Bentrad, N., Gaceb-Terrak, R., Rahmania, F., Identification and evaluation of antibacterial agents present in lipophilic fractions isolated from sub-products of Phoenix dactilyfera. Natural product research, 31 (2017), 2544-2548. doi.org/10.1080/14786419.2017.1314282
  • Kumar, P., Lee, J.H., Beyenal, H., Lee, J., Fatty acids as antibiofilm and antivirulence agents. Trends in microbiology, 28 (2020), 753-768 doi.org/10.1016/j.tim.2020.03.014
  • Prasath, K.G., Tharani, H., Kumar, M.S., Pandian, S.K., Palmitic acid inhibits the virulence factors of Candida tropicalis: Biofilms, cell surface hydrophobicity, ergosterol biosynthesis, and enzymatic activity. Frontiers in Microbiology, 11 (2020), 864. doi.org/10.3389/fmicb.2020.00864
  • Xie, Y., Peng, Q., Ji, Y., Xie, A., Yang, L., Mu, S., Li, Z., He, T., Xiao, Y., Zhao, J., Zhang, Q. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Frontiers in microbiology, 12 (2021), 645484. doi.org/10.3389/fmicb.2021.645484
  • El Demerdash, E., Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicology and applied pharmacology, 254 (2011), 238-244. doi.org/10.1016/j.taap.2011.04.016
  • Janani S.R., Singaravadivel, K., Screening of phytochemical and GC-MS analysis of some bioactive constituents of Asparagus racemosus. International Journal of PharmTech Research, 6 (2014), 428-432.
  • Mantawy, E.M., Tadros, M.G., Awad, A.S., Hassan, D.A., El-Demerdash, E., Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicology and applied pharmacology, 258 (2012), 134-144. doi.org/10.1016/j.taap.2011.10.016
  • Roopa, M. S., Shubharani, R., Rhetso, T., Sivaram, V., Comparative analysis of phytochemical constituents, free radical scavenging activity and GC-MS analysis of leaf and flower extract of Tithonia diversifolia (Hemsl.) A. Gray. International Journal of Pharmaceutical Sciences & Research, 11 (2020), 5081-5090. doi.org/10.1186/s43094-020-00100-7
  • Wang, Y. N., Wang, H. X., Shen, Z. J., Zhao, L. L., Clarke, S. R., Sun, J. H., Du, Y.Y., Shi, G. L., Methyl palmitate, an acaricidal compound occurring in green walnut husks. Journal of Economic Entomology, 102 (2009), 196-202. doi.org/10.1603/029.102.0128
  • Irez, E.I., Hacıoğlu Doğru, N., Demir N., Fomes fomentarius (L.) Fr. extracts as sources of an antioxidant, antimicrobial and antibiofilm agents. Biologica Nyssana, 12 (2021), 55-62. doi.org/10.5281/zenodo.5523017
  • Dokhaharani, S.C., Ghobad-Nejad, M., Farazmand, A., Moghimi, H., Rahmani, H., Evaluation of antibacterial activity of methanolic extract of the polypore fungus Fomes fomentarius (Polyporaceae) against Staphylococcus aureus. Current Medical Mycology, 4 (2018), 152-153. doi.org/10.1007/s12223-021-00884-y
There are 51 citations in total.

Details

Primary Language English
Subjects Industrial Microbiology
Journal Section Research Articles
Authors

Umay Merve Şenturan 0000-0003-2700-7088

Ilgaz Akata 0000-0002-1731-1302

Ergin Murat Altuner 0000-0001-5351-8071

Publication Date June 20, 2025
Submission Date March 28, 2025
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 34 Issue: 1

Cite

Communications Faculty of Sciences University of Ankara Series C Biology licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License