Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 22 - 26, 30.10.2019

Abstract

References

  • [1] I. Aydin, On variable exponent amalgam spaces, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica 20(3) (2012), 5-20.
  • [2] I. Aydin, On vector-valued classical and variable exponent amalgam spaces, Commun.Fac. Sci. Univ. Ank. Series A1 66(2) (2017), 100-114.
  • [3] I. Aydin, A. T. Gurkanli, Weighted variable exponent amalgam spaces $W(L^{p(x)};L_{w}^{q})$, Glasnik Matematicki 47(67) (2012), 165-174.
  • [4] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(.)}$, Mathematical Inequalities and Applications 7 (2004), 245-253.
  • [5] D. Edmunds, J. Lang, A. Nekvinda, On $L^{p(x)}$ norms, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455 (1999), 219-225.
  • [6] H. G. Feichtinger, Banach convolution algebras of Wiener type, In: Functions, Series, Operators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai (1980), 509-524.
  • [7] J. J. Fournier, J. Stewart, Amalgams of $L^{p}$and $\ell ^{q}$, Bull. Amer. Math. Soc. 13 (1985), 1-21.
  • [8] A. T. Gurkanli, The amalgam spaces $W(L^{p(x)};L^{\left\{ p_{n}\right\} })$ and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow (2013).
  • [9] A. T. Gurkanli, I. Aydin, On the weighted variable exponent amalgam space $W(L^{p(x)},L_{m}^{q})$, Acta Mathematica Scientia 34B(4) (2014), 1-13.
  • [10] C. Heil, An introduction to weighted Wiener amalgams, In: Wavelets and their applications (Chennai, January 2002), Allied Publishers, New Delhi (2003), 183-216.
  • [11] F. Holland, Harmonic analysis on amalgams of $L^{p}$ and $l^{q}$, J. London Math. Soc. 2(10) (1975), 295-305.
  • [12] O. Kovácik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116)(4) (1991), 592-618.
  • [13] N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926), 575-616.

Amalgam Spaces With Variable Exponent

Year 2019, Volume: 2 Issue: 1, 22 - 26, 30.10.2019

Abstract

Let $1\leq s<\infty $ and $1\leq r(.)\leq \infty $ where $r(.)$ is a variable exponent. In this study, we consider the variable exponent amalgam space $\left( L^{r(.)},\ell ^{s}\right) $. Moreover, we present some examples about inclusion properties of this space. Finally, we obtain that the space $\left( L^{r(.)},\ell ^{s}\right) $ is a Banach Function space.

References

  • [1] I. Aydin, On variable exponent amalgam spaces, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica 20(3) (2012), 5-20.
  • [2] I. Aydin, On vector-valued classical and variable exponent amalgam spaces, Commun.Fac. Sci. Univ. Ank. Series A1 66(2) (2017), 100-114.
  • [3] I. Aydin, A. T. Gurkanli, Weighted variable exponent amalgam spaces $W(L^{p(x)};L_{w}^{q})$, Glasnik Matematicki 47(67) (2012), 165-174.
  • [4] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(.)}$, Mathematical Inequalities and Applications 7 (2004), 245-253.
  • [5] D. Edmunds, J. Lang, A. Nekvinda, On $L^{p(x)}$ norms, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455 (1999), 219-225.
  • [6] H. G. Feichtinger, Banach convolution algebras of Wiener type, In: Functions, Series, Operators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai (1980), 509-524.
  • [7] J. J. Fournier, J. Stewart, Amalgams of $L^{p}$and $\ell ^{q}$, Bull. Amer. Math. Soc. 13 (1985), 1-21.
  • [8] A. T. Gurkanli, The amalgam spaces $W(L^{p(x)};L^{\left\{ p_{n}\right\} })$ and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow (2013).
  • [9] A. T. Gurkanli, I. Aydin, On the weighted variable exponent amalgam space $W(L^{p(x)},L_{m}^{q})$, Acta Mathematica Scientia 34B(4) (2014), 1-13.
  • [10] C. Heil, An introduction to weighted Wiener amalgams, In: Wavelets and their applications (Chennai, January 2002), Allied Publishers, New Delhi (2003), 183-216.
  • [11] F. Holland, Harmonic analysis on amalgams of $L^{p}$ and $l^{q}$, J. London Math. Soc. 2(10) (1975), 295-305.
  • [12] O. Kovácik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116)(4) (1991), 592-618.
  • [13] N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926), 575-616.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İsmail Aydın 0000-0001-8371-3185

Cihan Ünal 0000-0002-7242-393X

Publication Date October 30, 2019
Acceptance Date October 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Aydın, İ., & Ünal, C. (2019). Amalgam Spaces With Variable Exponent. Conference Proceedings of Science and Technology, 2(1), 22-26.
AMA Aydın İ, Ünal C. Amalgam Spaces With Variable Exponent. Conference Proceedings of Science and Technology. October 2019;2(1):22-26.
Chicago Aydın, İsmail, and Cihan Ünal. “Amalgam Spaces With Variable Exponent”. Conference Proceedings of Science and Technology 2, no. 1 (October 2019): 22-26.
EndNote Aydın İ, Ünal C (October 1, 2019) Amalgam Spaces With Variable Exponent. Conference Proceedings of Science and Technology 2 1 22–26.
IEEE İ. Aydın and C. Ünal, “Amalgam Spaces With Variable Exponent”, Conference Proceedings of Science and Technology, vol. 2, no. 1, pp. 22–26, 2019.
ISNAD Aydın, İsmail - Ünal, Cihan. “Amalgam Spaces With Variable Exponent”. Conference Proceedings of Science and Technology 2/1 (October 2019), 22-26.
JAMA Aydın İ, Ünal C. Amalgam Spaces With Variable Exponent. Conference Proceedings of Science and Technology. 2019;2:22–26.
MLA Aydın, İsmail and Cihan Ünal. “Amalgam Spaces With Variable Exponent”. Conference Proceedings of Science and Technology, vol. 2, no. 1, 2019, pp. 22-26.
Vancouver Aydın İ, Ünal C. Amalgam Spaces With Variable Exponent. Conference Proceedings of Science and Technology. 2019;2(1):22-6.