Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 27 - 36, 30.10.2019

Abstract

References

  • [1] K. Bartkowski, P. Gorka, One-dimensional Klein–Gordon equation with logarithmic nonlinearities, J. Phys. A., 41(35) (2008), 1-11.
  • [2] I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 23(4) (1975), 461-466.
  • [3] I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100(1–2) (1976), 62-93.
  • [4] H. Buljan, A. Siber, M. Soljacic, T. Schwartz, M. Segev, D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E 3(2003), 68.
  • [5] T. Cazenave, A. Haraux, Equations d’evolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse 2(1) (1980), 21–51.
  • [6] P. Gorka, Logarithmic Klein–Gordon equation, Acta Phys. Pol. B 40(1) (2009), 59–66.
  • [7] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97(4) (1975), 1061–1083.
  • [8] X.S. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc. 50(1) (2013), 275–283.
  • [9] T. Hiramatsu, M. Kawasaki, F. Takahashi, Numerical study of Q-ball formation in gravity mediation, J. Cosmol. Astropart. Phys.6(2010).
  • [10] J. Lions, Quelques methodes de resolution des problems aux limites non lineaires, Dunod Gauthier-Villars, Paris, 1969.
  • [11] S. De Martino, M. Falanga, C. Godano, G. Lauro, Logarithmic Schrödinger-like equation as a model for magma transport, Europhys, 63(3) (2003), 472–475.
  • [12] M.M. Al-Gharabli, S.A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, Journal of Evolution Equations, 18(1) (2018),105-125.
  • [13] M.M. Al-Gharabli, S.A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454(2017), 1114-1128.
  • [14] H.W. Zhang, G.W. Liu, Q.Y. Hu, Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping, Appl. Math. Optim., 79(1) (2017), 131-144.

Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term

Year 2019, Volume: 2 Issue: 1, 27 - 36, 30.10.2019

Abstract

The main goal of this paper is to study for a fourth-order hyperbolic equation with logarithmic nonlinearity. We obtain several results: Firstly, by using Feado-Galerkin method and a logaritmic Sobolev inequality, we proved local existence of solutions. Later, we proved global existence of solutions by potential well method. Finally, we showed the decay estimates result of the solutions.

References

  • [1] K. Bartkowski, P. Gorka, One-dimensional Klein–Gordon equation with logarithmic nonlinearities, J. Phys. A., 41(35) (2008), 1-11.
  • [2] I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 23(4) (1975), 461-466.
  • [3] I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100(1–2) (1976), 62-93.
  • [4] H. Buljan, A. Siber, M. Soljacic, T. Schwartz, M. Segev, D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E 3(2003), 68.
  • [5] T. Cazenave, A. Haraux, Equations d’evolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse 2(1) (1980), 21–51.
  • [6] P. Gorka, Logarithmic Klein–Gordon equation, Acta Phys. Pol. B 40(1) (2009), 59–66.
  • [7] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97(4) (1975), 1061–1083.
  • [8] X.S. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc. 50(1) (2013), 275–283.
  • [9] T. Hiramatsu, M. Kawasaki, F. Takahashi, Numerical study of Q-ball formation in gravity mediation, J. Cosmol. Astropart. Phys.6(2010).
  • [10] J. Lions, Quelques methodes de resolution des problems aux limites non lineaires, Dunod Gauthier-Villars, Paris, 1969.
  • [11] S. De Martino, M. Falanga, C. Godano, G. Lauro, Logarithmic Schrödinger-like equation as a model for magma transport, Europhys, 63(3) (2003), 472–475.
  • [12] M.M. Al-Gharabli, S.A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, Journal of Evolution Equations, 18(1) (2018),105-125.
  • [13] M.M. Al-Gharabli, S.A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454(2017), 1114-1128.
  • [14] H.W. Zhang, G.W. Liu, Q.Y. Hu, Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping, Appl. Math. Optim., 79(1) (2017), 131-144.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erhan Pişkin 0000-0001-6587-4479

Nazlı Irkıl 0000-0002-9130-2893

Publication Date October 30, 2019
Acceptance Date October 2, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Pişkin, E., & Irkıl, N. (2019). Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term. Conference Proceedings of Science and Technology, 2(1), 27-36.
AMA Pişkin E, Irkıl N. Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term. Conference Proceedings of Science and Technology. October 2019;2(1):27-36.
Chicago Pişkin, Erhan, and Nazlı Irkıl. “Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation With Logarithmic Source Term”. Conference Proceedings of Science and Technology 2, no. 1 (October 2019): 27-36.
EndNote Pişkin E, Irkıl N (October 1, 2019) Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term. Conference Proceedings of Science and Technology 2 1 27–36.
IEEE E. Pişkin and N. Irkıl, “Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term”, Conference Proceedings of Science and Technology, vol. 2, no. 1, pp. 27–36, 2019.
ISNAD Pişkin, Erhan - Irkıl, Nazlı. “Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation With Logarithmic Source Term”. Conference Proceedings of Science and Technology 2/1 (October 2019), 27-36.
JAMA Pişkin E, Irkıl N. Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term. Conference Proceedings of Science and Technology. 2019;2:27–36.
MLA Pişkin, Erhan and Nazlı Irkıl. “Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation With Logarithmic Source Term”. Conference Proceedings of Science and Technology, vol. 2, no. 1, 2019, pp. 27-36.
Vancouver Pişkin E, Irkıl N. Mathematical Behavior of Solutions of Fourth-Order Hyperbolic Equation with Logarithmic Source Term. Conference Proceedings of Science and Technology. 2019;2(1):27-36.