Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 2, 153 - 157, 25.11.2019

Abstract

References

  • [1] N. Ayyıldız , A. C. Çöken and Ahmet Yücesan, A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4) (2007), 999-1018.
  • [2] R. A. Abdel Bakey, An Explicit Characterization of Dual Spherical Curve, Commun. Fac. Sci. Univ. Ank. Series, 51(2) (2002), 2, 1-9
  • [3] S. Breuer, D. Gottlieb, Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc. 27 (1971), 126-127.
  • [4] K. Ilarslan, Ç. Camci, H. Kocayigit, On the explicit characterization of spherical curves in 3-dimensional Lorentzian space, Journal of Inverse and Ill-posed Problems, 11 (2003), 4, pp. 389-397.
  • [5] S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turk. J. Math. 28 (2004), 153-163.
  • [6] O. Kose, An Expilicit Characterization of Dual Spherical Curves, Do˘ga Mat. 12(3) (1998), 105-113.
  • [7] M. Özdemir, An Alternative Approach to Elliptical Motion, Adv. Appl. Clifford Algebras 26 (2016), 279-304.
  • [8] Z. Özdemir, F. Ates, Trajectories of a point on the elliptical 2-sphere, arXiv:submit/2795112.
  • [9] P. D. Scofield, Curves of Constant Precession, Amer. Math. Monthly. 102(6)(1995), 531-537.
  • [10] Y. C. Wong, On an Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc., 34(1) (1972), 239-242.
  • [11] Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365.

Special Helices on the Ellipsoid

Year 2019, Volume: 2 Issue: 2, 153 - 157, 25.11.2019

Abstract

In this study, we investigate three types of special helices whose axis is a fixed constant Killing vector field on the Ellipsoid $% \mathbb{S}_{a_{1},a_{2},a_{3}}^{2}$ in $\mathbb{R}_{a_{1},a_{2},a_{3}}^{3}$. Then, we obtain the curvatures of all special helices on the ellipsoid $% \mathbb{S}_{a_{1},a_{2},a_{3}}^{2}$ and give some characterizations of these curves. Moreover, we present various examples and visualize their images using the Mathematica program.

References

  • [1] N. Ayyıldız , A. C. Çöken and Ahmet Yücesan, A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space, Taiwanese Journal of Mathematics, 11(4) (2007), 999-1018.
  • [2] R. A. Abdel Bakey, An Explicit Characterization of Dual Spherical Curve, Commun. Fac. Sci. Univ. Ank. Series, 51(2) (2002), 2, 1-9
  • [3] S. Breuer, D. Gottlieb, Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc. 27 (1971), 126-127.
  • [4] K. Ilarslan, Ç. Camci, H. Kocayigit, On the explicit characterization of spherical curves in 3-dimensional Lorentzian space, Journal of Inverse and Ill-posed Problems, 11 (2003), 4, pp. 389-397.
  • [5] S. Izumiya, N. Takeuchi, New Special Curves and Developable Surfaces, Turk. J. Math. 28 (2004), 153-163.
  • [6] O. Kose, An Expilicit Characterization of Dual Spherical Curves, Do˘ga Mat. 12(3) (1998), 105-113.
  • [7] M. Özdemir, An Alternative Approach to Elliptical Motion, Adv. Appl. Clifford Algebras 26 (2016), 279-304.
  • [8] Z. Özdemir, F. Ates, Trajectories of a point on the elliptical 2-sphere, arXiv:submit/2795112.
  • [9] P. D. Scofield, Curves of Constant Precession, Amer. Math. Monthly. 102(6)(1995), 531-537.
  • [10] Y. C. Wong, On an Explicit Characterization of Spherical Curves, Proc. Am. Math. Soc., 34(1) (1972), 239-242.
  • [11] Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math. 67 (1963), 363-365.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zehra Özdemir 0000-0001-9750-507X

Publication Date November 25, 2019
Acceptance Date October 25, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Özdemir, Z. (2019). Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology, 2(2), 153-157.
AMA Özdemir Z. Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology. November 2019;2(2):153-157.
Chicago Özdemir, Zehra. “Special Helices on the Ellipsoid”. Conference Proceedings of Science and Technology 2, no. 2 (November 2019): 153-57.
EndNote Özdemir Z (November 1, 2019) Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology 2 2 153–157.
IEEE Z. Özdemir, “Special Helices on the Ellipsoid”, Conference Proceedings of Science and Technology, vol. 2, no. 2, pp. 153–157, 2019.
ISNAD Özdemir, Zehra. “Special Helices on the Ellipsoid”. Conference Proceedings of Science and Technology 2/2 (November 2019), 153-157.
JAMA Özdemir Z. Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology. 2019;2:153–157.
MLA Özdemir, Zehra. “Special Helices on the Ellipsoid”. Conference Proceedings of Science and Technology, vol. 2, no. 2, 2019, pp. 153-7.
Vancouver Özdemir Z. Special Helices on the Ellipsoid. Conference Proceedings of Science and Technology. 2019;2(2):153-7.