1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
2 B. Koşar, C. Nebiyev, N. Sökmez, g-Supplemented Modules, Ukrainian Math. J., 67(6) (2015), 861-864.
3 B. Koşar, C. Nebiyev, A. Pekin, A Generalization of g-Supplemented Modules, Miskolc Math. Notes, 20(1) (2019), 345-352.
4 C. Nebiyev, H. H. Ökten, Essential g-Supplemented Modules, Turkish St. Inf. Tech. and Appl. Sci., 14(1) (2019), 83-89.
5 C. Nebiyev, H. H. Ökten, A. Pekin, Essential Supplemented Modules, Int. J. of Pure and Appl. Math., 120(2) (2018), 253-257.
6 C. Nebiyev, H. H. Ökten, A. Pekin, Amply Essential Supplemented Modules, J. of Sci. Res. and Rep., 21(4) (2018), 1-4.
7 W. Xue, Characterizations of Semiperfect and Perfect Rings, Publ. Mat., 40 (1996), 115-125.
8 Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. of Math., 10(6) (2006), 1589-1601.
9 R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
eg-Radical Supplemented Modules
Year 2020,
Volume: 3 Issue: 1, 37 - 41, 15.12.2020
In this work, R will denote an associative ring with unity and all module are unital left R-modules. Let M be an R-module. If every essential submodule of M has a g-radical supplement in M, then M is called an essential g-radical supplemented (or briefly eg-radical supplemented) module. In this work, some properties of these modules are investigated.
1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
2 B. Koşar, C. Nebiyev, N. Sökmez, g-Supplemented Modules, Ukrainian Math. J., 67(6) (2015), 861-864.
3 B. Koşar, C. Nebiyev, A. Pekin, A Generalization of g-Supplemented Modules, Miskolc Math. Notes, 20(1) (2019), 345-352.
4 C. Nebiyev, H. H. Ökten, Essential g-Supplemented Modules, Turkish St. Inf. Tech. and Appl. Sci., 14(1) (2019), 83-89.
5 C. Nebiyev, H. H. Ökten, A. Pekin, Essential Supplemented Modules, Int. J. of Pure and Appl. Math., 120(2) (2018), 253-257.
6 C. Nebiyev, H. H. Ökten, A. Pekin, Amply Essential Supplemented Modules, J. of Sci. Res. and Rep., 21(4) (2018), 1-4.
7 W. Xue, Characterizations of Semiperfect and Perfect Rings, Publ. Mat., 40 (1996), 115-125.
8 Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. of Math., 10(6) (2006), 1589-1601.
9 R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
Nebiyev, C., & Ökten, H. H. (2020). eg-Radical Supplemented Modules. Conference Proceedings of Science and Technology, 3(1), 37-41.
AMA
Nebiyev C, Ökten HH. eg-Radical Supplemented Modules. Conference Proceedings of Science and Technology. December 2020;3(1):37-41.
Chicago
Nebiyev, Celil, and Hasan Hüseyin Ökten. “Eg-Radical Supplemented Modules”. Conference Proceedings of Science and Technology 3, no. 1 (December 2020): 37-41.
EndNote
Nebiyev C, Ökten HH (December 1, 2020) eg-Radical Supplemented Modules. Conference Proceedings of Science and Technology 3 1 37–41.
IEEE
C. Nebiyev and H. H. Ökten, “eg-Radical Supplemented Modules”, Conference Proceedings of Science and Technology, vol. 3, no. 1, pp. 37–41, 2020.
ISNAD
Nebiyev, Celil - Ökten, Hasan Hüseyin. “Eg-Radical Supplemented Modules”. Conference Proceedings of Science and Technology 3/1 (December 2020), 37-41.
JAMA
Nebiyev C, Ökten HH. eg-Radical Supplemented Modules. Conference Proceedings of Science and Technology. 2020;3:37–41.
MLA
Nebiyev, Celil and Hasan Hüseyin Ökten. “Eg-Radical Supplemented Modules”. Conference Proceedings of Science and Technology, vol. 3, no. 1, 2020, pp. 37-41.
Vancouver
Nebiyev C, Ökten HH. eg-Radical Supplemented Modules. Conference Proceedings of Science and Technology. 2020;3(1):37-41.