Research Article
BibTex RIS Cite

Biosynthesis, Characterization and Antioxidant Properties of ZnO Nanoparticles Using Punica Granatum Peel Extract as Reducing Agent

Year 2023, Volume: 44 Issue: 1, 90 - 98, 26.03.2023
https://doi.org/10.17776/csj.1223357

Abstract

The green synthesis method of nanoparticles using plant extracts attracts great attention as a reliable, low-cost, sustainable, environmentally friendly protocol that prevents or minimizes waste generation. In this study, Punica granatum peel extract was used as the reducing plant material and zinc acetate dihydrate (Zn (CH3COO)2. 2H2O) solution was used as the starting metal. In the synthesis, optimum conditions were determined by UV visible spectroscopy using different metal ion concentrations, plant extract amount, temperature, and pH parameters. For characterization of ZnONPs synthesized at optimum conditions, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Dynamic Light Scattering (DLS), Zeta potential and Atomic Force Microscope (AFM) analyzes were made. It has been determined that the synthesized ZnONPs are spherical, have good stability, high purity, and nanoscale. The free radical scavenging capacity of biosynthesized ZnONPs was evaluated by DPPH analysis with different concentrations. The IC50 value was determined as 250µg ml-1.

Supporting Institution

Cübap

Project Number

M-721

References

  • [1] Beykaya M., Çağlar A. Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16 (3) (2016) 631-641.
  • [2] Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R. N., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical Reviews, 108 (6) (2008) 2064-2110.
  • [3] Schröfel A., Kratošová G., Šafařík I., Šafaříková M., Raška I., Shor L. M., Applications of biosynthesized metallic nanoparticles–a review, Acta Biomaterialia, 10(10) (2014) 4023-4042.
  • [4] Shah M., Fawcett D., Sharma S., Tripathy S. K., Poinern G. E. J., Green synthesis of metallic nanoparticles via biological entities, Materials, 8 (11) (2015) 7278-7308.
  • [5] Iravani S., Green synthesis of metal nanoparticles using plants, Green Chemistry, 13 (10) (2011) 2638-2650.
  • [6] Shankar S. S., Rai A., Ahmad A., Sastry M., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, Journal of Colloid and Interface Science, 275 (2) (2004) 496-502.
  • [7] Asmathunisha N., Kathiresan K., A review on biosynthesis of nanoparticles by marine organisms, Colloids and Surfaces B: Biointerfaces, 103 (2013) 283-287.
  • [8] Canbaz G. T., Açıkel U., Açıkel Y. S., ZnO-Kitosan Kompoziti ile Ağır Metal Giderimi, Avrupa Bilim ve Teknoloji Dergisi, (35) (2022) 603-609.
  • [9] Sharma D., Sabela M. I., Kanchi S., Mdluli P. S., Singh G., Stenström T. A., Bisetty K., Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies., Journal of Photochemistry and Photobiology B: Biology, 162 (2016) 199-207.
  • [10] Ghaseminezhad S. M., Hamedi S., Shojaosadati S. A. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties, Carbohydrate Polymers, 89 (2) (2012) 467-472.
  • [11] Çetinkaya H. K., Güvercin D., Karakurt Y., Molecular characterization of pomegranate (Punica granatum L.) Genotypes with SSR Markers, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14 (2) (2019) 345-351.
  • [12] Okumuş G., Yıldız E., Bayizid A. A., Doğal antioksidan bileşikler: Nar yan ürünlerinin antioksidan olarak değerlendirilmesi, Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29 (2) (2015).
  • [13] Vijayaraghavan K., Ashokkumar T., Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications, Journal of Environmental Chemical Engineering, 5 (5) (2017) 4866-4883.
  • [14] Dobrucka R., Długaszewska J., Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi J Biol Sci 23 (2016) 517–523.
  • [15] Yedurkar S. M., Maurya C. B., Mahanwar P. A., A biological approach for the synthesis of copper oxide nanoparticles by Ixora coccinea leaf extract, J. Mater. Environ. Sci, 8 (4) (2017) 1173-1178.
  • [16] Bhuyan T., Mishra K., Khanuja M., Prasad R., Varma A., Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Materials Science in Semiconductor Processing, 32 (2015) 55-61.
  • [17] Gupta M., Tomar R. S., Kaushik S., Mishra R. K., Sharma D., Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus, Frontiers in Microbiology, 9, (2018) 2030.
  • [18] Pal S., Tak Y. K. Y Song J. M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli., Appl Environ Microbiol, 73 (6) (2007) 1712-1720.
  • [19] Sun S., Murray C. B., Weller D., Folks L., Moser A., Monodisperse Fe Pt nanoparticles and ferromagnetic Fe Pt nanocrystal superlattices, Science, 287(5460) (2000) 1989-1992.
  • [20] Sathishkumar G., Pradeep K. Jha, Vignesh V., Rajkuberan C., Jeyaraj M., Selvakumar M., Rakhi Jha, Sivaramakrishnan S., Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity, Journal of Molecular Liquids 21 (2016) 229–236.
  • [21] Mittal J., Batra A., Singh A., Sharma M. M., Phytofabrication of nanoparticles through plant as nanofactories, Advances in Natural Sciences: Nanoscience and Nanotechnology, 5 (4) (2014) 043002.
  • [22] Song J. Y., Kwon E. Y., Kim B. S., Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess and Biosystems Engineering, 33 (1) (2010) 159-164.
  • [23] Jamdagni P., Khatri P., Rana J. S., Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity, Journal of King Saud University-Science, 30 (2) (2018) 168-175.
  • [24] Chunfa D., Fei C., Xianglin Z., Xiangjie W., Xiuzhi Y., Bin Y., Rapid and green synthesis of monodisperse silver nanoparticles using mulberry leaf extract, Rare Metal Materials and Engineering, 47 (4) (2018) 1089-1095.
  • [25] Bali R., Harris A. T., Biogenic synthesis of Au nanoparticles using vascular plants, Industrial & Engineering Ehemistry Research, 49 (24) (2010) 12762-12772.
  • [26] Firooz A. A., Mirzaie R. A., Kamrani F., Effect of morphological ZnO nanostructures on the optical and decolorization properties, Journal of Structural Chemistry, 59 (3) (2018) 739-743.
  • [27] Taghavi Fardood, S., Ramazani A., Asiabi P. A., Joo S. W., A novel green synthesis of copper oxide nanoparticles using a henna extract powder, Journal of Structural Chemistry, 59 (7) (2018) 1737-1743.
  • [28] Anbuvannan M., Ramesh M., Viruthagiri G., Shanmugam N., Kannadasan N., Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Materials Science in Semiconductor Processing, 39 (2015) 621-628.
  • [29] Yuvakkumar R., Suresh J., Nathanael A. J., Sundrarajan M., Hong S. I., Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications, Materials Science and Engineering: C, 41 (2014) 17-27.
  • [30] Velmurugan P., Anbalagan K., Manosathyadevan M., Lee K. J., Cho M., Lee S. M., Oh B. T., Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens, Bioprocess and Biosystems Engineering, 37 (10) (2014) 1935-1943.
  • [31] Salam H. A., Sivaraj R., Venckatesh R., Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract, Materials Letters, 131 (2014) 16-18.
  • [32] Anžlovar A., Crnjak Orel Z., Kogej K., Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate), Journal of Nanomaterials, 2012 (31) (2012).
  • [33] Sharma V., Shukla R. K., Saxena N., Parmar D., Das M., Dhawan A., DNA damaging potential of zinc oxide nanoparticles in human epidermal cells, Toxicology Letters, 185 (3) (2009) 211-218.
  • [34] Nidhin M., Indumathy R., Sreeram K. J., Nair B. U., Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates, Bulletin of Materials Science, 31 (1) (2008) 93-96.
  • [35] Anandalakshmi K., Venugobal J., Ramasamy V., Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity, Applied Nanoscience, 6 (3) (2016) 399-408.
  • [36] Jayapriya M., Dhanasekaran D., Arulmozhi M., Nandhakumar E., Senthilkumar N., Sureshkumar K., Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity, Research on Chemical Intermediates, 45(6) (2019) 3617-3631.
  • [37] Kumar P., Suresh D., Nagabhushana H., Sharma S. C., Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties, The European Physical Journal Plus, 130 (6) (2015) 1-7.
  • [38] Jayappa M. D., Ramaiah C. K., Kumar M. A. P., Suresh D., Prabhu A., Devasya R. P., Sheikh S., Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications, Applied Nanoscience, 10 (8) (2020) 3057-3074.
  • [39] Azizi S., Mohamad R., Mahdavi Shahri M., Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) Schrad: characterization and biomedical applications, Molecules, 22 (2) (2017) 301.
  • [40] Ananthalakshmi R., Rajarathinam S. R., Sadiq A. M., Antioxidant activity of ZnO Nanoparticles synthesized using peel extract, Research Journal of Pharmacy and Technology, 12 (4) (2019) 1569-1572.
  • [41] Safawo T., Sandeep B. V., Pola S., Tadesse A., Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. Open Nano, 3, (2018) 56-63.
Year 2023, Volume: 44 Issue: 1, 90 - 98, 26.03.2023
https://doi.org/10.17776/csj.1223357

Abstract

Project Number

M-721

References

  • [1] Beykaya M., Çağlar A. Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16 (3) (2016) 631-641.
  • [2] Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R. N., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chemical Reviews, 108 (6) (2008) 2064-2110.
  • [3] Schröfel A., Kratošová G., Šafařík I., Šafaříková M., Raška I., Shor L. M., Applications of biosynthesized metallic nanoparticles–a review, Acta Biomaterialia, 10(10) (2014) 4023-4042.
  • [4] Shah M., Fawcett D., Sharma S., Tripathy S. K., Poinern G. E. J., Green synthesis of metallic nanoparticles via biological entities, Materials, 8 (11) (2015) 7278-7308.
  • [5] Iravani S., Green synthesis of metal nanoparticles using plants, Green Chemistry, 13 (10) (2011) 2638-2650.
  • [6] Shankar S. S., Rai A., Ahmad A., Sastry M., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, Journal of Colloid and Interface Science, 275 (2) (2004) 496-502.
  • [7] Asmathunisha N., Kathiresan K., A review on biosynthesis of nanoparticles by marine organisms, Colloids and Surfaces B: Biointerfaces, 103 (2013) 283-287.
  • [8] Canbaz G. T., Açıkel U., Açıkel Y. S., ZnO-Kitosan Kompoziti ile Ağır Metal Giderimi, Avrupa Bilim ve Teknoloji Dergisi, (35) (2022) 603-609.
  • [9] Sharma D., Sabela M. I., Kanchi S., Mdluli P. S., Singh G., Stenström T. A., Bisetty K., Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies., Journal of Photochemistry and Photobiology B: Biology, 162 (2016) 199-207.
  • [10] Ghaseminezhad S. M., Hamedi S., Shojaosadati S. A. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties, Carbohydrate Polymers, 89 (2) (2012) 467-472.
  • [11] Çetinkaya H. K., Güvercin D., Karakurt Y., Molecular characterization of pomegranate (Punica granatum L.) Genotypes with SSR Markers, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14 (2) (2019) 345-351.
  • [12] Okumuş G., Yıldız E., Bayizid A. A., Doğal antioksidan bileşikler: Nar yan ürünlerinin antioksidan olarak değerlendirilmesi, Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29 (2) (2015).
  • [13] Vijayaraghavan K., Ashokkumar T., Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications, Journal of Environmental Chemical Engineering, 5 (5) (2017) 4866-4883.
  • [14] Dobrucka R., Długaszewska J., Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi J Biol Sci 23 (2016) 517–523.
  • [15] Yedurkar S. M., Maurya C. B., Mahanwar P. A., A biological approach for the synthesis of copper oxide nanoparticles by Ixora coccinea leaf extract, J. Mater. Environ. Sci, 8 (4) (2017) 1173-1178.
  • [16] Bhuyan T., Mishra K., Khanuja M., Prasad R., Varma A., Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Materials Science in Semiconductor Processing, 32 (2015) 55-61.
  • [17] Gupta M., Tomar R. S., Kaushik S., Mishra R. K., Sharma D., Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus, Frontiers in Microbiology, 9, (2018) 2030.
  • [18] Pal S., Tak Y. K. Y Song J. M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli., Appl Environ Microbiol, 73 (6) (2007) 1712-1720.
  • [19] Sun S., Murray C. B., Weller D., Folks L., Moser A., Monodisperse Fe Pt nanoparticles and ferromagnetic Fe Pt nanocrystal superlattices, Science, 287(5460) (2000) 1989-1992.
  • [20] Sathishkumar G., Pradeep K. Jha, Vignesh V., Rajkuberan C., Jeyaraj M., Selvakumar M., Rakhi Jha, Sivaramakrishnan S., Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity, Journal of Molecular Liquids 21 (2016) 229–236.
  • [21] Mittal J., Batra A., Singh A., Sharma M. M., Phytofabrication of nanoparticles through plant as nanofactories, Advances in Natural Sciences: Nanoscience and Nanotechnology, 5 (4) (2014) 043002.
  • [22] Song J. Y., Kwon E. Y., Kim B. S., Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess and Biosystems Engineering, 33 (1) (2010) 159-164.
  • [23] Jamdagni P., Khatri P., Rana J. S., Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity, Journal of King Saud University-Science, 30 (2) (2018) 168-175.
  • [24] Chunfa D., Fei C., Xianglin Z., Xiangjie W., Xiuzhi Y., Bin Y., Rapid and green synthesis of monodisperse silver nanoparticles using mulberry leaf extract, Rare Metal Materials and Engineering, 47 (4) (2018) 1089-1095.
  • [25] Bali R., Harris A. T., Biogenic synthesis of Au nanoparticles using vascular plants, Industrial & Engineering Ehemistry Research, 49 (24) (2010) 12762-12772.
  • [26] Firooz A. A., Mirzaie R. A., Kamrani F., Effect of morphological ZnO nanostructures on the optical and decolorization properties, Journal of Structural Chemistry, 59 (3) (2018) 739-743.
  • [27] Taghavi Fardood, S., Ramazani A., Asiabi P. A., Joo S. W., A novel green synthesis of copper oxide nanoparticles using a henna extract powder, Journal of Structural Chemistry, 59 (7) (2018) 1737-1743.
  • [28] Anbuvannan M., Ramesh M., Viruthagiri G., Shanmugam N., Kannadasan N., Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Materials Science in Semiconductor Processing, 39 (2015) 621-628.
  • [29] Yuvakkumar R., Suresh J., Nathanael A. J., Sundrarajan M., Hong S. I., Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications, Materials Science and Engineering: C, 41 (2014) 17-27.
  • [30] Velmurugan P., Anbalagan K., Manosathyadevan M., Lee K. J., Cho M., Lee S. M., Oh B. T., Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens, Bioprocess and Biosystems Engineering, 37 (10) (2014) 1935-1943.
  • [31] Salam H. A., Sivaraj R., Venckatesh R., Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract, Materials Letters, 131 (2014) 16-18.
  • [32] Anžlovar A., Crnjak Orel Z., Kogej K., Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate), Journal of Nanomaterials, 2012 (31) (2012).
  • [33] Sharma V., Shukla R. K., Saxena N., Parmar D., Das M., Dhawan A., DNA damaging potential of zinc oxide nanoparticles in human epidermal cells, Toxicology Letters, 185 (3) (2009) 211-218.
  • [34] Nidhin M., Indumathy R., Sreeram K. J., Nair B. U., Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates, Bulletin of Materials Science, 31 (1) (2008) 93-96.
  • [35] Anandalakshmi K., Venugobal J., Ramasamy V., Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity, Applied Nanoscience, 6 (3) (2016) 399-408.
  • [36] Jayapriya M., Dhanasekaran D., Arulmozhi M., Nandhakumar E., Senthilkumar N., Sureshkumar K., Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity, Research on Chemical Intermediates, 45(6) (2019) 3617-3631.
  • [37] Kumar P., Suresh D., Nagabhushana H., Sharma S. C., Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties, The European Physical Journal Plus, 130 (6) (2015) 1-7.
  • [38] Jayappa M. D., Ramaiah C. K., Kumar M. A. P., Suresh D., Prabhu A., Devasya R. P., Sheikh S., Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications, Applied Nanoscience, 10 (8) (2020) 3057-3074.
  • [39] Azizi S., Mohamad R., Mahdavi Shahri M., Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) Schrad: characterization and biomedical applications, Molecules, 22 (2) (2017) 301.
  • [40] Ananthalakshmi R., Rajarathinam S. R., Sadiq A. M., Antioxidant activity of ZnO Nanoparticles synthesized using peel extract, Research Journal of Pharmacy and Technology, 12 (4) (2019) 1569-1572.
  • [41] Safawo T., Sandeep B. V., Pola S., Tadesse A., Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. Open Nano, 3, (2018) 56-63.
There are 41 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Zehra Seba Keskin 0000-0003-1334-5158

Unsal Açıkel 0000-0003-4969-8502

Project Number M-721
Publication Date March 26, 2023
Submission Date December 23, 2022
Acceptance Date March 2, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Keskin, Z. S., & Açıkel, U. (2023). Biosynthesis, Characterization and Antioxidant Properties of ZnO Nanoparticles Using Punica Granatum Peel Extract as Reducing Agent. Cumhuriyet Science Journal, 44(1), 90-98. https://doi.org/10.17776/csj.1223357