Research Article
BibTex RIS Cite

Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate

Year 2024, , 96 - 101, 26.12.2024
https://doi.org/10.69560/cujast.1580874

Abstract

In this study, the electrical characterization of a low-temperature GaN (LT-GaN) layer within an InGaN/GaN blue light-emitting LED structure grown on a sapphire substrate using the Metal Organic Chemical Vapor Deposition (MOCVD) method was examined. For high-quality growth of the GaN layer on a sapphire substrate, a two-stage GaN growth process is employed, consisting of a low-temperature GaN (LT-GaN) layer and a high-temperature GaN (HT-GaN) layer. This study specifically investigates the structural and electrical properties of the LT-GaN layer, which is the first stage of the GaN growth process. Structural characterization was performed using high-resolution X-ray diffraction (HRXRD), while electrical characterization involved Hall effect measurements and current-voltage (I-V) measurements. Based on the results from structural and electrical measurements, the optimal growth temperature for the LT-GaN layer was determined, and the effect of growth temperature on the electrical properties was demonstrated.

References

  • Aygün, E.,Zengin, M. 1998. “Atom ve Molekül Fiziği”. Ankara Üniversitesi, Ankara.
  • Colinge, J.-P.,Colinge, C.A. 2005. Yarıiletken Devre Elemanları Fiziği. Nobel Akademik Yayıncılık. (Çeviri: Tüzemen, S., Tekmen,S.), 324s., Ankara.
  • Eastman, L. F., & Mishra, U. K. 2002. The toughest transistor yet [GaN transistors]. IEEE spectrum, 39(5), 28-33. https://doi.org/10.1109/6.999791
  • Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H., & Hamakawa, Y. 1987. Improvement of carrier injection efficiency in a-SiC pin LED using highly-conductive wide-gap p, n type a-SiC prepared by ECR CVD. Journal of Non-Crystalline Solids, 97, 293-296. https://doi.org/10.1016/0022-3093(87)90070-6
  • Lester, S. D., Ponce, F.A., Craford, M.G and Steigerwald, D.A. 1995. High dislocation densities in high efficiency GaNbased lightemitting diodes. Appl. Phys. Lett. 66 1249. https://doi.org/10.1063/1.113252
  • Li , Z. L., Lai, P.T., and Choi, H.W. 2009. A Reliability Study on Green InGaN–GaN Light-Emitting Diodes. IEEE Photonics Tecknology Letters 21 1429-1431. https://doi.org/10.1109/LPT.2009.2028155
  • Mott, N. F., Twose, W. D., 1961. The theory of impurity conduction, Adv. Phys., 10(38): 107-163. https://doi.org/10.1080/00018736100101271
  • Mukai, T. and Nakamura, S. 1999. Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates. Jpn. Appl. Phys. 38 5735-5739. https://doi.org/10.1143/JJAP.38.5735
  • Mukai, T., Nagahama, S., Sano, M., Yanamoto, T., Morita, D., Mitani, T., ... & Kameshima, M. 2003. Recent progress of nitride‐based light emitting devices. physica status solidi (a), 200(1), 52-57. https://doi.org/10.1002/pssa.200303326
  • Muthu, S., Schuurmans, F. J., & Pashley, M. D. 2002, October. Red, green, and blue LED based white light generation: issues and control. In Conference record of the 2002 IEEE industry applications conference. 37th IAS annual meeting (cat. No. 02CH37344) (Vol. 1, pp. 327-333). IEEE. https://doi.org/10.1109/IAS.2002.1044108
  • Nakamura, S., Senoh, M., Iwas, N. and Nagahama, S. 1995. Highpower InGaN singlequantumwellstructure blue and violet lightemitting diodes. Appl. Phys. Lett. 1868. https://doi.org/10.1063/1.114359
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kryoku, H. and Sugimoto, Y. 1996a. InGaN-Based Multi-Quantum-Well-Structure Layer Diodes. Jpn. Appl. Phys., L-74-L76. https://doi.org/10.1143/JJAP.35.L74
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H. 1996b. Continuouswave operation of InGaN multiquantumwellstructure laser diodes at 233 K. Appl. Phys. Lett. 3034. https://doi.org/10.1063/1.116830
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matsushita, T. and Mukai, T. 2000. Blue InGaN-based laser diodes with an emission wavelength of 450 nm. Appl. Phys. Lett. 76 22. https://doi.org/10.1063/1.125643
  • Pimputkar, S., Speck, J.S., DenBaars, S.P. & Nakamura,S. 2009. Prospects for LED lighting, Nature Photonics 3, 180 – 182.
  • Salii, R. A., Mintairov, S. A., Nadtochiy, A. M., & Kalyuzhnyy, N. A. 2024. Epitaxial Heterostructures of the Active Region for Near-Infrared LEDs. Semiconductors, 58(3), 263-266. https://doi.org/10.1134/S1063782624030138 Singh, J. 2003. Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, New York, 1-494.
  • Yamaguchi, T., & Niina, T. A. T. S. U. H. I. K. O. 1981. A high brightness GaP multicolor LED. IEEE Transactions on Electron Devices, 28(5), 588-592. https://doi.org/10.1109/T-ED.1981.20387

Safir Alttaş Üzerine Büyütülen LT-GaN Tabakasının Sıcaklığa Bağlı Elektriksel Özelliklerinin Araştırılması

Year 2024, , 96 - 101, 26.12.2024
https://doi.org/10.69560/cujast.1580874

Abstract

Bu çalışmada, Metal Organik Kimyasal Buhar Biriktirme (MOCVD) yöntemi kullanılarak safir alttaş üzerine büyütülen InGaN/GaN mavi ışık yayan LED yapısında düşük sıcaklık GaN (LT-GaN) tabakasının elektriksel karakterizasyonu incelenmiştir. Safir alttaş üzerine GaN tabakasının kaliteli büyütülebilmesi için düşük sıcaklık GaN (LT-GaN) tabakası ve yüksek sıcaklık GaN (HT-GaN) tabakası şeklinde iki aşamalı GaN büyütmesi yapılır. Bu çalışmada GaN tabakasının büyütme aşamalarından ilki olan düşük sıcaklıkta GaN (LT-GaN) tabakasının yapısal ve elektriksel özellikleri incelenmiştir. Yapısal karakterizasyon yüksek çözünürlüklü X ışını kırınımı (HRXRD) ile, elektriksel karakterizasyon ise Hall etkisi ölçümü ve akım gerilim ölçümleri ile yapılmıştır. Yapısal ve elektriksel ölçümlerden elde edilen sonuçların değerlendirilmesi ile düşük sıcaklık LT-GaN tabakası için ideal büyütme sıcaklığı belirlenmiş, büyütme sıcaklığının elektriksel özellikler üzerindeki etkisi gösterilmiştir.

References

  • Aygün, E.,Zengin, M. 1998. “Atom ve Molekül Fiziği”. Ankara Üniversitesi, Ankara.
  • Colinge, J.-P.,Colinge, C.A. 2005. Yarıiletken Devre Elemanları Fiziği. Nobel Akademik Yayıncılık. (Çeviri: Tüzemen, S., Tekmen,S.), 324s., Ankara.
  • Eastman, L. F., & Mishra, U. K. 2002. The toughest transistor yet [GaN transistors]. IEEE spectrum, 39(5), 28-33. https://doi.org/10.1109/6.999791
  • Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H., & Hamakawa, Y. 1987. Improvement of carrier injection efficiency in a-SiC pin LED using highly-conductive wide-gap p, n type a-SiC prepared by ECR CVD. Journal of Non-Crystalline Solids, 97, 293-296. https://doi.org/10.1016/0022-3093(87)90070-6
  • Lester, S. D., Ponce, F.A., Craford, M.G and Steigerwald, D.A. 1995. High dislocation densities in high efficiency GaNbased lightemitting diodes. Appl. Phys. Lett. 66 1249. https://doi.org/10.1063/1.113252
  • Li , Z. L., Lai, P.T., and Choi, H.W. 2009. A Reliability Study on Green InGaN–GaN Light-Emitting Diodes. IEEE Photonics Tecknology Letters 21 1429-1431. https://doi.org/10.1109/LPT.2009.2028155
  • Mott, N. F., Twose, W. D., 1961. The theory of impurity conduction, Adv. Phys., 10(38): 107-163. https://doi.org/10.1080/00018736100101271
  • Mukai, T. and Nakamura, S. 1999. Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates. Jpn. Appl. Phys. 38 5735-5739. https://doi.org/10.1143/JJAP.38.5735
  • Mukai, T., Nagahama, S., Sano, M., Yanamoto, T., Morita, D., Mitani, T., ... & Kameshima, M. 2003. Recent progress of nitride‐based light emitting devices. physica status solidi (a), 200(1), 52-57. https://doi.org/10.1002/pssa.200303326
  • Muthu, S., Schuurmans, F. J., & Pashley, M. D. 2002, October. Red, green, and blue LED based white light generation: issues and control. In Conference record of the 2002 IEEE industry applications conference. 37th IAS annual meeting (cat. No. 02CH37344) (Vol. 1, pp. 327-333). IEEE. https://doi.org/10.1109/IAS.2002.1044108
  • Nakamura, S., Senoh, M., Iwas, N. and Nagahama, S. 1995. Highpower InGaN singlequantumwellstructure blue and violet lightemitting diodes. Appl. Phys. Lett. 1868. https://doi.org/10.1063/1.114359
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kryoku, H. and Sugimoto, Y. 1996a. InGaN-Based Multi-Quantum-Well-Structure Layer Diodes. Jpn. Appl. Phys., L-74-L76. https://doi.org/10.1143/JJAP.35.L74
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H. 1996b. Continuouswave operation of InGaN multiquantumwellstructure laser diodes at 233 K. Appl. Phys. Lett. 3034. https://doi.org/10.1063/1.116830
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matsushita, T. and Mukai, T. 2000. Blue InGaN-based laser diodes with an emission wavelength of 450 nm. Appl. Phys. Lett. 76 22. https://doi.org/10.1063/1.125643
  • Pimputkar, S., Speck, J.S., DenBaars, S.P. & Nakamura,S. 2009. Prospects for LED lighting, Nature Photonics 3, 180 – 182.
  • Salii, R. A., Mintairov, S. A., Nadtochiy, A. M., & Kalyuzhnyy, N. A. 2024. Epitaxial Heterostructures of the Active Region for Near-Infrared LEDs. Semiconductors, 58(3), 263-266. https://doi.org/10.1134/S1063782624030138 Singh, J. 2003. Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, New York, 1-494.
  • Yamaguchi, T., & Niina, T. A. T. S. U. H. I. K. O. 1981. A high brightness GaP multicolor LED. IEEE Transactions on Electron Devices, 28(5), 588-592. https://doi.org/10.1109/T-ED.1981.20387
There are 17 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Research Articles
Authors

Didem Altun 0000-0002-1964-3538

Sezai Elagöz 0000-0002-3600-8640

Early Pub Date December 23, 2024
Publication Date December 26, 2024
Submission Date November 7, 2024
Acceptance Date November 25, 2024
Published in Issue Year 2024

Cite

APA Altun, D., & Elagöz, S. (2024). Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(2), 96-101. https://doi.org/10.69560/cujast.1580874
AMA Altun D, Elagöz S. Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. CUJAST. December 2024;3(2):96-101. doi:10.69560/cujast.1580874
Chicago Altun, Didem, and Sezai Elagöz. “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 2 (December 2024): 96-101. https://doi.org/10.69560/cujast.1580874.
EndNote Altun D, Elagöz S (December 1, 2024) Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 2 96–101.
IEEE D. Altun and S. Elagöz, “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”, CUJAST, vol. 3, no. 2, pp. 96–101, 2024, doi: 10.69560/cujast.1580874.
ISNAD Altun, Didem - Elagöz, Sezai. “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/2 (December 2024), 96-101. https://doi.org/10.69560/cujast.1580874.
JAMA Altun D, Elagöz S. Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. CUJAST. 2024;3:96–101.
MLA Altun, Didem and Sezai Elagöz. “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 2, 2024, pp. 96-101, doi:10.69560/cujast.1580874.
Vancouver Altun D, Elagöz S. Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. CUJAST. 2024;3(2):96-101.