Research Article
BibTex RIS Cite

DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION

Year 2024, Volume: 3 Issue: 1, 21 - 29, 02.07.2024
https://doi.org/10.69560/cujast.1488558

Abstract

This study focuses on developing a piezoelectric-based passive damper to mitigate high- frequency brake noise. The research investigates different designs of piezoelectric transducer elements to convert mechanical energy into electrical energy using a mass sliding belt test system that simulates real disc brake noise mechanisms. Integration of these electrical elements into the existing mass-sliding belt system is investigated. Five distinct piezoelectric transducer designs (Design-1, Design-2, Design-3, Design-4 and Design-5), each with unique technical specifications, boundary conditions, and scaling, are developed to suppress high frequency noise from friction-induced vibrations. To facilitate effective selection, a scoring method is employed, identifying Design-5 with a cylindrical model as the most efficient transducer design. Evaluation criteria include energy generation, compressive strength, operating temperature, weight, ergonomic usability, cost, and safety. Analyses are performed to assess potential stress-induced damage to the piezoelectric material resulting from the selected design. This study aims to contribute a novel perspective to noise reduction techniques and successfully demonstrates the integration of a piezoelectric transducer and an RLC circuit into a functional system.

References

  • Kozień, M. S., & Kołtowski, B., 2011. Comparison of Active and Passive Damping of Plate Vibration by Piezoelectric Actuators - FEM Simulation. Acta Physica Polonica A, [s. l.], 119, 1005–1008.
  • Hagood, N. W., & von Flotow, A., 1991. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146(2), 243-268.
  • Hollkamp, J. J., & Starchville Jr, T. F., 1994. A self-tuning piezoelectric vibration absorber. Journal of intelligent material systems and structures, 5(4), 559-566.
  • Bellar, M. D., Wu, T. S., Tchamdjou, A., Mahdavi, J., & Ehsani, M., 1998. A review of soft-switched DC-AC converters. IEEE Transactions on Industry Applications, 34(4), 847-860.
  • Hariri, H., Bernard, Y., & Razek, A., 2011. Finite element model of a beam structure with RL shunt circuits. In AC2011, 124-131.
  • De Marneffe, B., & Preumont, A., 2008. Vibration damping with negative capacitance shunts: theory and experiment. Smart materials and Structures, 17(3), 035015.
  • Casadei, F., Beck, B. S., Cunefare, K. A., & Ruzzene, M., 2012. Vibration control of plates through hybrid configurations of periodic piezoelectric shunts. Journal of Intelligent Material Systems and Structures, 23(10), 1169-1177.
  • Min, J.B., Duffy, K.P. & et al., Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 12-15 April 2010, Orlando, United States.
  • Neubauer, M., & Oleskiewicz, R. 2006. Brake squeal suppression with shunted piezoceramics-a control formalism. IFAC Proceedings Volumes, 39(16), 520-525.
  • Neubauer, M., & Oleskiewicz, R. 2008. Suppression of brake squeal using shunted piezoceramics.
  • Park, J., Jung, T. H., Kim, J. K., & Park, G. 2017. Automobile brake squeal noise suppression using piezoelectric-based devices. J. Automobile Eng., 222(7), 1141-1151.
  • Jearsiripongkul, T., & Hagedorn, P. 2006. Active Control of Disk Brake Squeal. In Proceedings of the 20th Conference of Mechanical Engineering Network of Thailand, 1-5.
  • Jearsiripongkul, T., & Hochlenert, D. 2006. Disk brake squeal: modeling and active control. In 2006 IEEE conference on robotics, automation and mechatronics, 1-5.
  • Yavuz, A., Sen, O.T., 2023. Stability Analysis of a Mass-Sliding Belt System and Experimental Validation as Motivated by the Brake Squeal Problem. Journal of Vibration Engineering & Technologies. https://doi.org/10.1007/s42417-023-00849-0

YÜKSEK FREKANSLI GÜRÜLTÜNÜN AZALTILMASI İÇİN PİEZOELEKTRİK TABANLI PASİF SÖNÜMLEME TASARIMI VE DEĞERLENDİRİLMESİ

Year 2024, Volume: 3 Issue: 1, 21 - 29, 02.07.2024
https://doi.org/10.69560/cujast.1488558

Abstract

Bu çalışma, yüksek frekanslı fren gürültüsünü azaltmak için piezoelektrik tabanlı bir pasif damper geliştirmeye odaklanmaktadır. Araştırma, gerçek disk fren gürültüsü mekanizmalarını simüle eden bir kütle kayar kayış test sistemi kullanarak mekanik enerjiyi elektrik enerjisine dönüştürmek için farklı piezoelektrik dönüştürücü eleman tasarımlarını incelemektedir. Bu elektrikli elemanların mevcut kütle kayan kayış sistemine entegrasyonu incelenmiştir. Sürtünme kaynaklı titreşimlerden kaynaklanan yüksek frekanslı gürültüyü bastırmak için her biri benzersiz teknik özelliklere, sınır koşullarına ve ölçeklendirmeye sahip beş farklı piezoelektrik dönüştürücü tasarımı (Tasarım-1, Tasarım-2, Tasarım-3, Tasarım-4 ve Tasarım-5) geliştirilmiştir. Etkili seçimi kolaylaştırmak için bir puanlama yöntemi kullanılmış ve silindirik modele sahip Tasarım-5 en verimli dönüştürücü tasarımı olarak belirlenmiştir. Değerlendirme kriterleri arasında enerji üretimi, basınç dayanımı, çalışma sıcaklığı, ağırlık, ergonomik kullanılabilirlik, maliyet ve güvenlik yer almaktadır. Seçilen tasarımdan kaynaklanan piezoelektrik malzemedeki potansiyel stres kaynaklı hasarı değerlendirmek için analizler yapılmıştır. Bu çalışma, gürültü azaltma tekniklerine yeni bir bakış açısı kazandırmayı amaçlamakta ve piezoelektrik dönüştürücü ile RLC devresinin işlevsel bir sisteme entegrasyonunu başarılı bir şekilde göstermektedir.

References

  • Kozień, M. S., & Kołtowski, B., 2011. Comparison of Active and Passive Damping of Plate Vibration by Piezoelectric Actuators - FEM Simulation. Acta Physica Polonica A, [s. l.], 119, 1005–1008.
  • Hagood, N. W., & von Flotow, A., 1991. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146(2), 243-268.
  • Hollkamp, J. J., & Starchville Jr, T. F., 1994. A self-tuning piezoelectric vibration absorber. Journal of intelligent material systems and structures, 5(4), 559-566.
  • Bellar, M. D., Wu, T. S., Tchamdjou, A., Mahdavi, J., & Ehsani, M., 1998. A review of soft-switched DC-AC converters. IEEE Transactions on Industry Applications, 34(4), 847-860.
  • Hariri, H., Bernard, Y., & Razek, A., 2011. Finite element model of a beam structure with RL shunt circuits. In AC2011, 124-131.
  • De Marneffe, B., & Preumont, A., 2008. Vibration damping with negative capacitance shunts: theory and experiment. Smart materials and Structures, 17(3), 035015.
  • Casadei, F., Beck, B. S., Cunefare, K. A., & Ruzzene, M., 2012. Vibration control of plates through hybrid configurations of periodic piezoelectric shunts. Journal of Intelligent Material Systems and Structures, 23(10), 1169-1177.
  • Min, J.B., Duffy, K.P. & et al., Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 12-15 April 2010, Orlando, United States.
  • Neubauer, M., & Oleskiewicz, R. 2006. Brake squeal suppression with shunted piezoceramics-a control formalism. IFAC Proceedings Volumes, 39(16), 520-525.
  • Neubauer, M., & Oleskiewicz, R. 2008. Suppression of brake squeal using shunted piezoceramics.
  • Park, J., Jung, T. H., Kim, J. K., & Park, G. 2017. Automobile brake squeal noise suppression using piezoelectric-based devices. J. Automobile Eng., 222(7), 1141-1151.
  • Jearsiripongkul, T., & Hagedorn, P. 2006. Active Control of Disk Brake Squeal. In Proceedings of the 20th Conference of Mechanical Engineering Network of Thailand, 1-5.
  • Jearsiripongkul, T., & Hochlenert, D. 2006. Disk brake squeal: modeling and active control. In 2006 IEEE conference on robotics, automation and mechatronics, 1-5.
  • Yavuz, A., Sen, O.T., 2023. Stability Analysis of a Mass-Sliding Belt System and Experimental Validation as Motivated by the Brake Squeal Problem. Journal of Vibration Engineering & Technologies. https://doi.org/10.1007/s42417-023-00849-0
There are 14 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control, Machine Design and Machine Equipment, Machine Theory and Dynamics, Mechanical Vibrations and Noise
Journal Section Research Articles
Authors

Mert Uygun 0009-0001-3961-2552

Akif Yavuz 0000-0002-9447-7306

Osman Taha Şen 0000-0002-8604-3962

Early Pub Date July 2, 2024
Publication Date July 2, 2024
Submission Date May 23, 2024
Acceptance Date June 26, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Uygun, M., Yavuz, A., & Şen, O. T. (2024). DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(1), 21-29. https://doi.org/10.69560/cujast.1488558
AMA Uygun M, Yavuz A, Şen OT. DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION. CUJAST. July 2024;3(1):21-29. doi:10.69560/cujast.1488558
Chicago Uygun, Mert, Akif Yavuz, and Osman Taha Şen. “DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 1 (July 2024): 21-29. https://doi.org/10.69560/cujast.1488558.
EndNote Uygun M, Yavuz A, Şen OT (July 1, 2024) DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 1 21–29.
IEEE M. Uygun, A. Yavuz, and O. T. Şen, “DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION”, CUJAST, vol. 3, no. 1, pp. 21–29, 2024, doi: 10.69560/cujast.1488558.
ISNAD Uygun, Mert et al. “DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/1 (July 2024), 21-29. https://doi.org/10.69560/cujast.1488558.
JAMA Uygun M, Yavuz A, Şen OT. DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION. CUJAST. 2024;3:21–29.
MLA Uygun, Mert et al. “DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 1, 2024, pp. 21-29, doi:10.69560/cujast.1488558.
Vancouver Uygun M, Yavuz A, Şen OT. DESIGN AND EVALUATION OF PIEZOELECTRIC-BASED PASSIVE DAMPING FOR HIGH FREQUENCY NOISE SUPPRESSION. CUJAST. 2024;3(1):21-9.