Research Article
BibTex RIS Cite

Immobilization of Candida tropicalis Lipase and Cells Isolated from Olive Pulp

Year 2024, Volume: 3 Issue: 2, 55 - 60, 26.12.2024
https://doi.org/10.69560/cujast.1540517

Abstract

Yeast isolated from waste olive pulp obtained from a local olive oil mill was identified and determined to be a Candida tropicalis strain. Lipase production optimization of C. tropicalis strain has been completed. The lipase produced according to the optimization parameters was partially purified by ammonium sulfate precipitation and dialysis. Crude enzyme, partially purified lipase, and cells of the C. torpicalis strain were separately immobilized into sodium alginate, k-Carrageenan, and Agar-Agar, respectively, and their lipase activities were investigated. The highest lipase activity was determined as 10.83 U/ml in the partially purified sample that was not immobilized.

References

  • Basheer SM, Chellappan S, Beena PS, Sukumaran RK, Elyas KK, Chandrasekaran M. 2011. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. New Biotechnology, 28(6): 627-638. doi: 10.1016/j.nbt.2011.04.007
  • Başkan G, and Açıkel Ü. 2023. The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. Cumhuriyet Science Journal, 44(3): 497-503. doi: 10.17776/csj.1127921
  • Chen K-C, Lin Y-H, Chen W-H, Liu Y-C. 2002. Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme and Microbial Technology, 31(4): 490-497. doi: 10.1016/S0141-0229(02)00148-5
  • Dias B, Lopes M, Ramôa R, Pereira AS, Belo I. 2021. Candida tropicalis as a Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion. Energies, 14(3): 640. doi: 10.3390/en14030640
  • Fadnavis NW, Sheelu G, Kumar BM, Bhalerao MU, Deshpande AA. 2003. Gelatin blends with alginate: gels for lipase immobilization and purification. Biotechnology Progress, 19(2): 557-564. doi: 10.1021/bp010172f
  • Fasim A, More VS, More SS. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69: 68-76. doi: 10.1016/j.copbio.2020.12. 002
  • Fukaya K, Yamaguchi Y, Watanabe A, Yamamoto H, Sugai T, Sugai T, Sato T, Chida N. 2016. Practical synthesis of the C-ring precursor of paclitaxel from 3-methoxytoluene. The Journal of Antibiotics, 69: 273-279. doi: 10.1038/ja.2016.6
  • Ghosh PK, Saxena RK, Gupta R, Yaday RP, Davidson S. 1996. Microbial lipases: production and applications. Science Progress, 79(Pt 2): 119-157.
  • Guneser O, Demirkol A, Yuceer YK, Togay SO, Hosoglu MI, Elibol M. 2017. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Brazilian Journal of Microbiology, 48 (2) 275-285. doi: 10.1016/j.bjm.2016.08.003
  • Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64(6): 763-781. doi: 10.1007/s00253-004-1568-8
  • Hatzinikolaou D, Macris JB, Christakopoulos P, Kekos D, Kolisis FN, Fountoukidis G. 1996. Production and Partial Characterization of Extracellular Lipase from Aspergillus niger. Biotechnology Letters, 18: 547-552. doi: 10.1007/BF00140201
  • Hou CT. 2002. Industrial Uses of Lipase. In: Kuo TM, Gardner HW (editors). Lipid Biotechnology. New York, Basel: Marcel Dekker, Inc. pp. 390-416. ISBN 0-8247-0619-6
  • Kamzolova SV, Morgunov IG, Aurich A, Perevoznikova OA, Shishkanova NV, Stottmeister U, Finogenova TV. 2005. Lipase Secretion and Citric Acid Production in Yarrowia lipolytica Yeast Grown on Animal and Vegetable Fat. Food Technology and Biotechnology, 43(2): 113-122.
  • Kebabcı Ö, and Cihangir N. 2022. A Novel Yeast Isolated From Olive Mill Waste Candida tropicalis; Optimization of Medium Composition For Lipase Production. The Journal of Fungus, 13(1): 8-14. doi: 10.30708/mantar.992551
  • Kebabci Ö, and Cihangir N. 2011. Immobilization of Lipase and Lipase Producing Yeast, Yarrowia lipolytica NBRC 1658. Hacettepe Journal of Biology and Chemistry, 39(3): 283-288.
  • Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, Arora PK. 2023. Industrial applications of fungal lipases: a review. Frontiers in Microbiology, 14: 1142536. doi: 10.3389/fmicb.2023.1142536
  • Kumar S, Neeraj, Mishra VK, Karn SKr. 2018. Biodegradation of phenol by free and immobilized Candida tropicalis NPD1401. African Journal of Biotechnology, 17(3): 57-64. doi:10.5897/AJB2017.15906
  • Kutty SN, Damodaran R, Philip R. 2012. Degradation of petroleum hydrocarbons by marine yeasts Candida tropicalis SD 302 and Pichia guilliermondii SD 337. Blue Biotechnology, 1(3): 423-431.
  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. 1951. Protein mesurement with the folin reagent. Journal of Biological Chemistry, 193: 265-275.
  • Matuoog N, and Yunjun Y. 2017. Review: Immobilization and application of lipase. IOSR Journal of Pharmacy and Biological Sciences, 12(5): 01-16. doi: 10.9790/3008-1205010116
  • Meghwanshi GK, and Vashishtha A. 2018. Biotechnology of Fungal Lipases. In: Gehlot P, Singh J (editors). Fungi and their Role in Sustainable Development: Current Perspectives. Singapore, Springer. pp. 383-412. ISBN 978-981-13-0392-0
  • Mehta A, Bodh U, Gupta R. 2017. Fungal lipases: a review. Journal of Biotech Research, 8(1): 58-77.
  • Melani NB, Tambourgi EB, Silveira E. 2019. Lipases: From Production to Applications. Separation & Purification Reviews, 49(2): 143-158. doi: 10.1080/15422119.2018.1564328
  • Pothayi V, Kutty SN, Devasia SC. 2022. Effect of Physico-Chemical Parameters in the Production of Hydrolytic Enzymes from Yeast Candida tropicalis Isolated from the Mangrove Sediments of North Kerala, India. Jordan Journal of Biological Sciences, 15(2): 249-255. doi: 10.54319/jjbs/150212
  • Rane K, and Sims K. 1993. Production of citric acid by Candida lipolytica Y 1095: Effect of glucose concentration on yield and productivity. Enzyme and Microbial Technology, 15(8): 646-651. doi: 10.1016/0141-0229(93)90063-8
  • Rehman A, Rasool S, Mukhtar H, ul Haq I. 2014. Production of an extracellular lipase by Candida utilis NRRL-Y-900 using agro-industrial by-products. Turkish Journal of Biochemistry, 39(2): 140-149. doi: 10.5505/tjb.2014.96977
  • Rharrabti Y, and El Yamani M. 2019. Olive mill wastewater: Treatment and valorization technologies. In: Hussain CM (editor). Handbook of Environmental Materials Management. Switzerland, Springer Nature. pp. 1659–1686. ISBN 978-3-319-73644-0
  • Sakpuntoon V, Angchuan J, Boontham W, Khunnamwong P, Boonmak C, Srisuk N. 2020. Grease Waste as a Reservoir of Lipase-Producing Yeast and Description of Limtongella siamensis gen. nov., sp. nov. Microorganisms, 8(1): 27. doi: 10.3390/microorganisms8010027
  • Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19(8): 627-662. doi: 10.1016/s0734-9750(01)00086-6
  • Silva NCG, Macedo AC, Pinheiron ÁDT, Rocha MVP. 2019. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse. Journal of Environmental Chemical Engineering, 7(3): 103076. doi: 10.1016/j.jece.2019.103076
  • Sugihara A, Tani T, Tominaga Y. 1991. Purification and characterization of a novel thermostable lipase from Bacillus sp. The Journal of Biochemistry, 109(2): 211-216.
  • Tan L, Li H, Ning S, Hao J. 2014. Aerobic Decolorization and Degradation of Acid Orange G (AOG) by Suspended Growing Cells and Immobilized Cells of a Yeast Strain Candida tropicalis TL-F1. Applied Biochemistry and Biotechnology, 174(4): 1651-1667. doi: 10.1007/s12010-014-1086-9
  • Thangaraj B, and Solomon PR. 2019a. Immobilization of Lipases - A Review Part I: Enzyme Immobilization. ChemBioEng Reviews, 6(5): 157-166. doi: 10.1002/cben.201900016
  • Thangaraj B, and Solomon PR. 2019b. Immobilization of Lipases - A Review Part II: Carrier Materials. ChemBioEng Reviews, 6(5): 167–194. doi: 10.1002/cben.201900017
  • Thangavelu K, Sundararaju P, Srinivasan N, Muniraj I, Uthandi S. 2020. Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Candida tropicalis ASY2. Biotechnology for Biofuels, 13(1): 35. doi: 10.1186/s13068-020-01676-1
  • Tokak S, Kılıç İH, Yalçın HT, Duran T. 2019. Detection of Extracellular Lipases and Genotypic Identification from Yeast Causing Spoilage of Some Dairy Products Produced in Gaziantep. KSU Journal of Agriculture and Nature, 22 (1): 206-211. doi: 10.18016/ksutarimdoga.vi.555727
  • Ulbrich‐Hofmann R. 2012. Methods in Molecular Biology, Volume 861: Lipases and Phospholipases: Methods and Protocols. In: Sandoval G (editor). Wiley Online Library. ChemBioChem., 13(14). doi: 10.1002/cbic.201200542
  • Varma RJ, and Gaikwad BG. 2010. Continuous phenol biodegradation in a simple packed bed bioreactor of calcium alginate-immobilized Candida tropicalis (NCIM 3556). World Journal of Microbiology and Biotechnology, 26(5): 805-809. doi: 10.1007/s11274-009-0236-7
  • Vakhlu J, and Kour A. 2006. Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9(1): 9. doi: 10.2225/vol9-issue1-fulltext-9

Zeytin küspesinden İzole Edilen Candida tropicalis Lipazının ve Hücrelerinin İmmobilizasyonu

Year 2024, Volume: 3 Issue: 2, 55 - 60, 26.12.2024
https://doi.org/10.69560/cujast.1540517

Abstract

Yerel bir zeytin yağı imalathanesinden elde edilen atık zeytin küspesinden izole edilen maya tanımlanmış ve Candida tropicalis suşu olduğu saptanmıştır. C. tropicalis suşunun lipaz üretim optimizasyonu tamamlanmıştır. Optimizasyon parametrelerine göre üretilen lipaz amonyum sülfat çöktürmesi ve diyaliz ile kısmi olarak saflaştırılmıştır. Kaba enzim, kısmen saflaştırılmış lipaz ve C. torpicalis suşunun hücreleri ayrı ayrı sırasıyla sodyum aljinata, k-Karragenana ve Agar-Agar’a tutuklanarak lipaz aktiviteleri araştırılmıştır. En yüksek lipaz aktivitesi immobilize edilmeyen kısmi saflaştırılmış örnekte 10,83 U/ml olarak saptanmıştır.

References

  • Basheer SM, Chellappan S, Beena PS, Sukumaran RK, Elyas KK, Chandrasekaran M. 2011. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. New Biotechnology, 28(6): 627-638. doi: 10.1016/j.nbt.2011.04.007
  • Başkan G, and Açıkel Ü. 2023. The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. Cumhuriyet Science Journal, 44(3): 497-503. doi: 10.17776/csj.1127921
  • Chen K-C, Lin Y-H, Chen W-H, Liu Y-C. 2002. Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme and Microbial Technology, 31(4): 490-497. doi: 10.1016/S0141-0229(02)00148-5
  • Dias B, Lopes M, Ramôa R, Pereira AS, Belo I. 2021. Candida tropicalis as a Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion. Energies, 14(3): 640. doi: 10.3390/en14030640
  • Fadnavis NW, Sheelu G, Kumar BM, Bhalerao MU, Deshpande AA. 2003. Gelatin blends with alginate: gels for lipase immobilization and purification. Biotechnology Progress, 19(2): 557-564. doi: 10.1021/bp010172f
  • Fasim A, More VS, More SS. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69: 68-76. doi: 10.1016/j.copbio.2020.12. 002
  • Fukaya K, Yamaguchi Y, Watanabe A, Yamamoto H, Sugai T, Sugai T, Sato T, Chida N. 2016. Practical synthesis of the C-ring precursor of paclitaxel from 3-methoxytoluene. The Journal of Antibiotics, 69: 273-279. doi: 10.1038/ja.2016.6
  • Ghosh PK, Saxena RK, Gupta R, Yaday RP, Davidson S. 1996. Microbial lipases: production and applications. Science Progress, 79(Pt 2): 119-157.
  • Guneser O, Demirkol A, Yuceer YK, Togay SO, Hosoglu MI, Elibol M. 2017. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Brazilian Journal of Microbiology, 48 (2) 275-285. doi: 10.1016/j.bjm.2016.08.003
  • Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64(6): 763-781. doi: 10.1007/s00253-004-1568-8
  • Hatzinikolaou D, Macris JB, Christakopoulos P, Kekos D, Kolisis FN, Fountoukidis G. 1996. Production and Partial Characterization of Extracellular Lipase from Aspergillus niger. Biotechnology Letters, 18: 547-552. doi: 10.1007/BF00140201
  • Hou CT. 2002. Industrial Uses of Lipase. In: Kuo TM, Gardner HW (editors). Lipid Biotechnology. New York, Basel: Marcel Dekker, Inc. pp. 390-416. ISBN 0-8247-0619-6
  • Kamzolova SV, Morgunov IG, Aurich A, Perevoznikova OA, Shishkanova NV, Stottmeister U, Finogenova TV. 2005. Lipase Secretion and Citric Acid Production in Yarrowia lipolytica Yeast Grown on Animal and Vegetable Fat. Food Technology and Biotechnology, 43(2): 113-122.
  • Kebabcı Ö, and Cihangir N. 2022. A Novel Yeast Isolated From Olive Mill Waste Candida tropicalis; Optimization of Medium Composition For Lipase Production. The Journal of Fungus, 13(1): 8-14. doi: 10.30708/mantar.992551
  • Kebabci Ö, and Cihangir N. 2011. Immobilization of Lipase and Lipase Producing Yeast, Yarrowia lipolytica NBRC 1658. Hacettepe Journal of Biology and Chemistry, 39(3): 283-288.
  • Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, Arora PK. 2023. Industrial applications of fungal lipases: a review. Frontiers in Microbiology, 14: 1142536. doi: 10.3389/fmicb.2023.1142536
  • Kumar S, Neeraj, Mishra VK, Karn SKr. 2018. Biodegradation of phenol by free and immobilized Candida tropicalis NPD1401. African Journal of Biotechnology, 17(3): 57-64. doi:10.5897/AJB2017.15906
  • Kutty SN, Damodaran R, Philip R. 2012. Degradation of petroleum hydrocarbons by marine yeasts Candida tropicalis SD 302 and Pichia guilliermondii SD 337. Blue Biotechnology, 1(3): 423-431.
  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. 1951. Protein mesurement with the folin reagent. Journal of Biological Chemistry, 193: 265-275.
  • Matuoog N, and Yunjun Y. 2017. Review: Immobilization and application of lipase. IOSR Journal of Pharmacy and Biological Sciences, 12(5): 01-16. doi: 10.9790/3008-1205010116
  • Meghwanshi GK, and Vashishtha A. 2018. Biotechnology of Fungal Lipases. In: Gehlot P, Singh J (editors). Fungi and their Role in Sustainable Development: Current Perspectives. Singapore, Springer. pp. 383-412. ISBN 978-981-13-0392-0
  • Mehta A, Bodh U, Gupta R. 2017. Fungal lipases: a review. Journal of Biotech Research, 8(1): 58-77.
  • Melani NB, Tambourgi EB, Silveira E. 2019. Lipases: From Production to Applications. Separation & Purification Reviews, 49(2): 143-158. doi: 10.1080/15422119.2018.1564328
  • Pothayi V, Kutty SN, Devasia SC. 2022. Effect of Physico-Chemical Parameters in the Production of Hydrolytic Enzymes from Yeast Candida tropicalis Isolated from the Mangrove Sediments of North Kerala, India. Jordan Journal of Biological Sciences, 15(2): 249-255. doi: 10.54319/jjbs/150212
  • Rane K, and Sims K. 1993. Production of citric acid by Candida lipolytica Y 1095: Effect of glucose concentration on yield and productivity. Enzyme and Microbial Technology, 15(8): 646-651. doi: 10.1016/0141-0229(93)90063-8
  • Rehman A, Rasool S, Mukhtar H, ul Haq I. 2014. Production of an extracellular lipase by Candida utilis NRRL-Y-900 using agro-industrial by-products. Turkish Journal of Biochemistry, 39(2): 140-149. doi: 10.5505/tjb.2014.96977
  • Rharrabti Y, and El Yamani M. 2019. Olive mill wastewater: Treatment and valorization technologies. In: Hussain CM (editor). Handbook of Environmental Materials Management. Switzerland, Springer Nature. pp. 1659–1686. ISBN 978-3-319-73644-0
  • Sakpuntoon V, Angchuan J, Boontham W, Khunnamwong P, Boonmak C, Srisuk N. 2020. Grease Waste as a Reservoir of Lipase-Producing Yeast and Description of Limtongella siamensis gen. nov., sp. nov. Microorganisms, 8(1): 27. doi: 10.3390/microorganisms8010027
  • Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19(8): 627-662. doi: 10.1016/s0734-9750(01)00086-6
  • Silva NCG, Macedo AC, Pinheiron ÁDT, Rocha MVP. 2019. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse. Journal of Environmental Chemical Engineering, 7(3): 103076. doi: 10.1016/j.jece.2019.103076
  • Sugihara A, Tani T, Tominaga Y. 1991. Purification and characterization of a novel thermostable lipase from Bacillus sp. The Journal of Biochemistry, 109(2): 211-216.
  • Tan L, Li H, Ning S, Hao J. 2014. Aerobic Decolorization and Degradation of Acid Orange G (AOG) by Suspended Growing Cells and Immobilized Cells of a Yeast Strain Candida tropicalis TL-F1. Applied Biochemistry and Biotechnology, 174(4): 1651-1667. doi: 10.1007/s12010-014-1086-9
  • Thangaraj B, and Solomon PR. 2019a. Immobilization of Lipases - A Review Part I: Enzyme Immobilization. ChemBioEng Reviews, 6(5): 157-166. doi: 10.1002/cben.201900016
  • Thangaraj B, and Solomon PR. 2019b. Immobilization of Lipases - A Review Part II: Carrier Materials. ChemBioEng Reviews, 6(5): 167–194. doi: 10.1002/cben.201900017
  • Thangavelu K, Sundararaju P, Srinivasan N, Muniraj I, Uthandi S. 2020. Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Candida tropicalis ASY2. Biotechnology for Biofuels, 13(1): 35. doi: 10.1186/s13068-020-01676-1
  • Tokak S, Kılıç İH, Yalçın HT, Duran T. 2019. Detection of Extracellular Lipases and Genotypic Identification from Yeast Causing Spoilage of Some Dairy Products Produced in Gaziantep. KSU Journal of Agriculture and Nature, 22 (1): 206-211. doi: 10.18016/ksutarimdoga.vi.555727
  • Ulbrich‐Hofmann R. 2012. Methods in Molecular Biology, Volume 861: Lipases and Phospholipases: Methods and Protocols. In: Sandoval G (editor). Wiley Online Library. ChemBioChem., 13(14). doi: 10.1002/cbic.201200542
  • Varma RJ, and Gaikwad BG. 2010. Continuous phenol biodegradation in a simple packed bed bioreactor of calcium alginate-immobilized Candida tropicalis (NCIM 3556). World Journal of Microbiology and Biotechnology, 26(5): 805-809. doi: 10.1007/s11274-009-0236-7
  • Vakhlu J, and Kour A. 2006. Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9(1): 9. doi: 10.2225/vol9-issue1-fulltext-9
There are 39 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other)
Journal Section Research Articles
Authors

Özgür Kebabcı 0000-0002-9404-747X

Early Pub Date December 23, 2024
Publication Date December 26, 2024
Submission Date August 29, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Kebabcı, Ö. (2024). Immobilization of Candida tropicalis Lipase and Cells Isolated from Olive Pulp. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(2), 55-60. https://doi.org/10.69560/cujast.1540517
AMA Kebabcı Ö. Immobilization of Candida tropicalis Lipase and Cells Isolated from Olive Pulp. CUJAST. December 2024;3(2):55-60. doi:10.69560/cujast.1540517
Chicago Kebabcı, Özgür. “Immobilization of Candida Tropicalis Lipase and Cells Isolated from Olive Pulp”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 2 (December 2024): 55-60. https://doi.org/10.69560/cujast.1540517.
EndNote Kebabcı Ö (December 1, 2024) Immobilization of Candida tropicalis Lipase and Cells Isolated from Olive Pulp. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 2 55–60.
IEEE Ö. Kebabcı, “Immobilization of Candida tropicalis Lipase and Cells Isolated from Olive Pulp”, CUJAST, vol. 3, no. 2, pp. 55–60, 2024, doi: 10.69560/cujast.1540517.
ISNAD Kebabcı, Özgür. “Immobilization of Candida Tropicalis Lipase and Cells Isolated from Olive Pulp”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/2 (December 2024), 55-60. https://doi.org/10.69560/cujast.1540517.
JAMA Kebabcı Ö. Immobilization of Candida tropicalis Lipase and Cells Isolated from Olive Pulp. CUJAST. 2024;3:55–60.
MLA Kebabcı, Özgür. “Immobilization of Candida Tropicalis Lipase and Cells Isolated from Olive Pulp”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 2, 2024, pp. 55-60, doi:10.69560/cujast.1540517.
Vancouver Kebabcı Ö. Immobilization of Candida tropicalis Lipase and Cells Isolated from Olive Pulp. CUJAST. 2024;3(2):55-60.