Research Article
BibTex RIS Cite

Investigation of SiO2 Nanoparticle Reinforced Epoxy Composites Produced by Additive Manufacturing: Effect of Silanization on Conversion Degree and Mechanical Properties

Year 2025, Volume: 4 Issue: 1, 12 - 20, 27.06.2025
https://doi.org/10.69560/cujast.1616786

Abstract

3D printers have revolutionized many areas such as aviation, dentistry, health, construction, food, pharmacy and tissue engineering by forming the basis of additive manufacturing technology. These devices, which work by adding material layer by layer, combine with CAD software to enable the rapid and efficient production of complex designs. DLP printers in the photochemical category stand out in medical applications by polymerizing photosensitizer resins with UV light. While inorganic fillers in these resins increase mechanical properties, excessive use can increase viscosity and reduce printing performance. Although SiO2 nanoparticles increase transparency and durability, their tendency to clump negatively affects mechanical properties. By coating the surface of these particles with the silanization method, they are better bonded with the resin, thus improving the integrity and mechanical strength of the structure. In this study, the aim is to investigate the effects of the silanization process on the mechanical properties and conversion degree of particles in epoxy composite materials reinforced with SiO2 nanoparticles. For this purpose, nanoparticles synthesized by the sol-gel method and subjected to the silane coating process were added to the epoxy resin at different rates and produced with a DLP type 3D printer. In the study, critical parameters such as the compatibility of coated and uncoated nanoparticles with the resin matrix, the viscosity properties of the material, mechanical strength and conversion degree were evaluated with detailed analyses. The obtained results aimed to reveal the effect of silane coating on increasing the performance of the material and to show the potential of this technology in application areas such as medicine, dentistry and tissue engineering.

Ethical Statement

The study is complied with research and publication ethics.

Supporting Institution

Dokuz Eylul University, Scientific Research Projects Coordinatorship with the project code 2021.KB.FEN.046.

Project Number

2021.KB.FEN.046

Thanks

This study was financially supported by Dokuz Eylul University, Scientific Research Projects Coordinatorship with the project code 2021.KB.FEN.046.

References

  • Aati, S., Akram, Z., Ngo, H., & Fawzy, A. S. (2021). Development of 3D printed resin reinforced with modified ZrO₂ nanoparticles for long-term provisional dental restorations. Dental Materials, 37(6), e360–e374. https://doi.org/10.1016/j.dental.2021.02.010
  • Al-Turaif, H. A. (2010). Effect of nano TiO₂ particle size on mechanical properties of cured epoxy resin. Progress in Organic Coatings, 69(3), 241–246. https://doi.org/10.1016/j.porgcoat.2010.05.011
  • Bao, Y., Paunović, N., & Leroux, J.-C. (2022). Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Advanced Functional Materials, 32(15), 2109864. https://doi.org/10.1002/adfm.202109864
  • Barszczewska-Rybarek, I. M. (2012). Quantitative determination of degree of conversion in photocured poly(urethane-dimethacrylate)s by Fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 123(3), 1604–1611. https://doi.org/10.1002/app.34553
  • Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., ... He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39, 661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  • da Silva, L. H., Feitosa, S. A., Valera, M. C., de Araujo, M. A. M., & Tango, R. N. (2012). Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology, 29(2), e1019–e1023. https://doi.org/10.1111/j.1741-2358.2011.00604.x
  • Dubey, R. S., Rajesh, Y. B. R. D., & More, M. A. (2015). Synthesis and characterization of SiO₂ nanoparticles via sol-gel method for industrial applications. Materials Today: Proceedings, 2(4), 3575–3579. https://doi.org/10.1016/j.matpr.2015.07.098
  • Gad, M. M. A., Abualsaud, R., Al-Thobity, A. M., Almaskin, D. F., Alzaher, Z. A., Abushowmi, T. H., ... Al-Harbi, F. A. (2020). Effect of SiO₂ nanoparticles addition on the flexural strength of repaired acrylic denture base. European Journal of Dentistry, 14(1), 19–23. https://doi.org/10.1055/s-0039-1701076
  • Horvath, J. (2014). A brief history of 3D printing. In Mastering 3D printing (pp. 3–10). Apress. https://doi.org/10.1007/978-1-4842-0025-4_1
  • Huang, J., Fu, P., Li, W., Xiao, L., Chen, J., & Nie, X. (2022). Influence of crosslinking density on the mechanical and thermal properties of plant oil-based epoxy resin. RSC Advances, 12(36), 23048–23056. https://doi.org/10.1039/D2RA04206A
  • Mohsen, N. M., & Craig, R. G. (1995). Effect of silanation of fillers on their dispersability by monomer systems. Journal of Oral Rehabilitation, 22(3), 183–189.
  • Moncada, E., Quijada, R., & Retuert, J. (2007). Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene. Nanotechnology, 18(33), 335606. https://doi.org/10.1088/0957-4484/18/33/335606
  • Mussatto, C. M. B., Oliveira, E. M. N., Subramani, K., Papaléo, R. M., & Mota, E. G. (2020). Effect of silica nanoparticles on mechanical properties of self-cured acrylic resin. Journal of Nanoparticle Research, 22(11). https://doi.org/10.1007/s11051-020-05050-y
  • Bahremandi Tolou, N., Fathi, M. H., Monshi, A., Mortazavi, V. S., & Mohammadi, M. (2013). The effect of adding TiO₂ nanoparticles on dental amalgam properties. Iranian Journal of Materials Science and Engineering, 10(2), 46–56. http://ijmse.iust.ac.ir/article-1-565-en.html
  • Neibloom, D., Bevan, M. A., & Frechette, J. (2020). Surfactant-stabilized spontaneous 3-(trimethoxysilyl) propyl methacrylate nanoemulsions. Langmuir, 36(1), 284–292. https://doi.org/10.1021/acs.langmuir.9b03412
  • Nguyen, T. C., Nguyen, T. D., Vu, D. T., Dinh, D. P., Nguyen, A. H., Ly, T. N. L., ... Thai, H. (2020). Modification of titanium dioxide nanoparticles with 3-(trimethoxysilyl)propyl methacrylate silane coupling agent. Journal of Chemistry, 2020, 1–9. https://doi.org/10.1155/2020/1381407
  • Pehlivan, N., & Karacaer, Ö. (2014). Diş hekimliğinde kullanılan kompozit rezinlerin güçlendirilmesi. Acta Odontologica Turcica, 31, 160–166. https://doi.org/10.17214/aot.66166
  • Rezvani, M. B., Atai, M., Hamze, F., & Hajrezai, R. (2016). The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins. Journal of Dental Research, Dental Clinics, Dental Prospects, 10(2), 112–117. https://doi.org/10.15171/joddd.2016.018
  • Rong, Y., Chen, H. Z., Wu, G., & Wang, M. (2005). Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Materials Chemistry and Physics, 91(2–3), 370–374. https://doi.org/10.1016/j.matchemphys.2004.11.042
  • Rossi Canuto de Menezes, B., da Graça Sampaio, A., Morais da Silva, D., Larissa do Amaral Montanheiro, T., Koga-Ito, C. Y., & Patrocínio Thim, G. (2021). AgVO₃ nanorods silanized with γ-MPS: An alternative for effective dispersion of AgVO₃ in dental acrylic resins improving the mechanical properties. Applied Surface Science, 543, 148830. https://doi.org/10.1016/j.apsusc.2020.148830
  • Siddiquey, I. A., Ukaji, E., Furusawa, T., Sato, M., & Suzuki, N. (2007). The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO₂. Materials Chemistry and Physics, 105(2–3), 162–168. https://doi.org/10.1016/j.matchemphys.2007.04.017
  • Silva, A. L., Salvador, G. M. da S., Castro, S. V. F., Carvalho, N. M. F., & Munoz, R. A. A. (2021). A 3D printer guide for the development and application of electrochemical cells and devices. Frontiers in Chemistry, 9, 684256. https://doi.org/10.3389/fchem.2021.684256
  • Sodagar, A., Bahador, A., Khalil, S., Saffar Shahroudi, A., & Zaman Kassaee, M. (2013). The effect of TiO₂ and SiO₂ nanoparticles on flexural strength of poly(methyl methacrylate) acrylic resins. Journal of Prosthodontic Research, 57(1), 15–19. https://doi.org/10.1016/j.jpor.2012.05.001
  • Tham, W. L., Chow, W. S., & Ishak, Z. A. M. (2010). The effect of 3-(trimethoxysilyl) propyl methacrylate on the mechanical, thermal, and morphological properties of poly(methyl methacrylate)/hydroxyapatite composites. Journal of Applied Polymer Science, 118(1), 218–228. https://doi.org/10.1002/app.32111
  • Varshney, S., Nigam, A., Pawar, S. J., & Mishra, N. (2022). Structural, optical, cytotoxic, and anti-microbial properties of amorphous silica nanoparticles synthesised via hybrid method for biomedical applications. Materials Technology, 37(10), 1504–1515. https://doi.org/10.1080/10667857.2021.1959190
  • Zhang, J., & Xiao, P. (2018). 3D printing of photopolymers. Polymer Chemistry, 9(13), 1530–1540. https://doi.org/10.1039/C8PY00157J
  • Zornoza-Indart, A., & López-Arce, P. (2015). Silica nanoparticles (SiO₂): Influence of relative humidity in stone consolidation. Journal of Cultural Heritage. https://doi.org/10.1016/j.culher.2015.06.002

Eklemeli Üretimle Üretilen SiO2 Nanopartikül Takviyeli Epoksi Kompozitlerin İncelenmesi: Silanizasyonun Dönüşüm Derecesi ve Mekanik Özellikler Üzerindeki Etkisi

Year 2025, Volume: 4 Issue: 1, 12 - 20, 27.06.2025
https://doi.org/10.69560/cujast.1616786

Abstract

3D yazıcılar, eklemeli üretim teknolojisinin temelini oluşturarak havacılık, diş hekimliği, sağlık, inşaat, gıda, eczacılık ve doku mühendisliği gibi birçok alanda devrim yaratmıştır. Malzemeyi katman katman ekleyerek çalışan bu cihazlar, CAD yazılımlarıyla birleşerek karmaşık tasarımların hızlı ve verimli bir şekilde üretilmesini sağlamaktadır. Fotokimyasal kategorideki DLP yazıcılar, fotosensitizör reçinelerini UV ışığıyla polimerize ederek tıbbi uygulamalarda öne çıkmaktadır. Bu reçinelerdeki inorganik dolgular mekanik özellikleri artırırken, aşırı kullanımı viskoziteyi artırarak baskı performansını düşürebilmektedir. SiO2 nanopartikülleri şeffaflığı ve dayanıklılığı artırmasına rağmen, topaklanma eğilimleri mekanik özellikleri olumsuz etkilemektedir. Bu partiküllerin yüzeyinin silanizasyon yöntemi ile kaplanmasıyla reçineyle daha iyi bağlanmaları sağlanmakta, böylece yapının bütünlüğü ve mekanik mukavemeti artmaktadır. Bu çalışmada, SiO2 nanopartikülleri ile takviye edilmiş epoksi kompozit malzemelerde silanizasyon işleminin partiküllerin mekanik özellikleri ve dönüşüm derecesi üzerindeki etkilerinin incelenmesi amaçlanmıştır. Bu amaçla sol-jel yöntemi ile sentezlenen ve silan kaplama işlemine tabi tutulan nanopartiküller farklı oranlarda epoksi reçinesine eklenerek DLP tipi 3D yazıcı ile üretilmiştir. Çalışmada, kaplanmış ve kaplanmamış nanopartiküllerin reçine matrisi ile uyumluluğu, malzemenin viskozite özellikleri, mekanik mukavemet ve dönüşüm derecesi gibi kritik parametreler detaylı analizlerle değerlendirilmiştir. Elde edilen sonuçlar, silan kaplamanın malzemenin performansını artırma etkisini ortaya koymayı ve bu teknolojinin tıp, diş hekimliği ve doku mühendisliği gibi uygulama alanlarındaki potansiyelini göstermeyi amaçlamaktadır.

Ethical Statement

Çalışma araştırma ve yayın etiğine uygundur.

Supporting Institution

Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü, 2021.KB.FEN.046.

Project Number

2021.KB.FEN.046

Thanks

Bu çalışma Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2021.KB.FEN.046 proje kodu ile maddi olarak desteklenmiştir.

References

  • Aati, S., Akram, Z., Ngo, H., & Fawzy, A. S. (2021). Development of 3D printed resin reinforced with modified ZrO₂ nanoparticles for long-term provisional dental restorations. Dental Materials, 37(6), e360–e374. https://doi.org/10.1016/j.dental.2021.02.010
  • Al-Turaif, H. A. (2010). Effect of nano TiO₂ particle size on mechanical properties of cured epoxy resin. Progress in Organic Coatings, 69(3), 241–246. https://doi.org/10.1016/j.porgcoat.2010.05.011
  • Bao, Y., Paunović, N., & Leroux, J.-C. (2022). Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Advanced Functional Materials, 32(15), 2109864. https://doi.org/10.1002/adfm.202109864
  • Barszczewska-Rybarek, I. M. (2012). Quantitative determination of degree of conversion in photocured poly(urethane-dimethacrylate)s by Fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 123(3), 1604–1611. https://doi.org/10.1002/app.34553
  • Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., ... He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39, 661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  • da Silva, L. H., Feitosa, S. A., Valera, M. C., de Araujo, M. A. M., & Tango, R. N. (2012). Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology, 29(2), e1019–e1023. https://doi.org/10.1111/j.1741-2358.2011.00604.x
  • Dubey, R. S., Rajesh, Y. B. R. D., & More, M. A. (2015). Synthesis and characterization of SiO₂ nanoparticles via sol-gel method for industrial applications. Materials Today: Proceedings, 2(4), 3575–3579. https://doi.org/10.1016/j.matpr.2015.07.098
  • Gad, M. M. A., Abualsaud, R., Al-Thobity, A. M., Almaskin, D. F., Alzaher, Z. A., Abushowmi, T. H., ... Al-Harbi, F. A. (2020). Effect of SiO₂ nanoparticles addition on the flexural strength of repaired acrylic denture base. European Journal of Dentistry, 14(1), 19–23. https://doi.org/10.1055/s-0039-1701076
  • Horvath, J. (2014). A brief history of 3D printing. In Mastering 3D printing (pp. 3–10). Apress. https://doi.org/10.1007/978-1-4842-0025-4_1
  • Huang, J., Fu, P., Li, W., Xiao, L., Chen, J., & Nie, X. (2022). Influence of crosslinking density on the mechanical and thermal properties of plant oil-based epoxy resin. RSC Advances, 12(36), 23048–23056. https://doi.org/10.1039/D2RA04206A
  • Mohsen, N. M., & Craig, R. G. (1995). Effect of silanation of fillers on their dispersability by monomer systems. Journal of Oral Rehabilitation, 22(3), 183–189.
  • Moncada, E., Quijada, R., & Retuert, J. (2007). Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene. Nanotechnology, 18(33), 335606. https://doi.org/10.1088/0957-4484/18/33/335606
  • Mussatto, C. M. B., Oliveira, E. M. N., Subramani, K., Papaléo, R. M., & Mota, E. G. (2020). Effect of silica nanoparticles on mechanical properties of self-cured acrylic resin. Journal of Nanoparticle Research, 22(11). https://doi.org/10.1007/s11051-020-05050-y
  • Bahremandi Tolou, N., Fathi, M. H., Monshi, A., Mortazavi, V. S., & Mohammadi, M. (2013). The effect of adding TiO₂ nanoparticles on dental amalgam properties. Iranian Journal of Materials Science and Engineering, 10(2), 46–56. http://ijmse.iust.ac.ir/article-1-565-en.html
  • Neibloom, D., Bevan, M. A., & Frechette, J. (2020). Surfactant-stabilized spontaneous 3-(trimethoxysilyl) propyl methacrylate nanoemulsions. Langmuir, 36(1), 284–292. https://doi.org/10.1021/acs.langmuir.9b03412
  • Nguyen, T. C., Nguyen, T. D., Vu, D. T., Dinh, D. P., Nguyen, A. H., Ly, T. N. L., ... Thai, H. (2020). Modification of titanium dioxide nanoparticles with 3-(trimethoxysilyl)propyl methacrylate silane coupling agent. Journal of Chemistry, 2020, 1–9. https://doi.org/10.1155/2020/1381407
  • Pehlivan, N., & Karacaer, Ö. (2014). Diş hekimliğinde kullanılan kompozit rezinlerin güçlendirilmesi. Acta Odontologica Turcica, 31, 160–166. https://doi.org/10.17214/aot.66166
  • Rezvani, M. B., Atai, M., Hamze, F., & Hajrezai, R. (2016). The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins. Journal of Dental Research, Dental Clinics, Dental Prospects, 10(2), 112–117. https://doi.org/10.15171/joddd.2016.018
  • Rong, Y., Chen, H. Z., Wu, G., & Wang, M. (2005). Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Materials Chemistry and Physics, 91(2–3), 370–374. https://doi.org/10.1016/j.matchemphys.2004.11.042
  • Rossi Canuto de Menezes, B., da Graça Sampaio, A., Morais da Silva, D., Larissa do Amaral Montanheiro, T., Koga-Ito, C. Y., & Patrocínio Thim, G. (2021). AgVO₃ nanorods silanized with γ-MPS: An alternative for effective dispersion of AgVO₃ in dental acrylic resins improving the mechanical properties. Applied Surface Science, 543, 148830. https://doi.org/10.1016/j.apsusc.2020.148830
  • Siddiquey, I. A., Ukaji, E., Furusawa, T., Sato, M., & Suzuki, N. (2007). The effects of organic surface treatment by methacryloxypropyltrimethoxysilane on the photostability of TiO₂. Materials Chemistry and Physics, 105(2–3), 162–168. https://doi.org/10.1016/j.matchemphys.2007.04.017
  • Silva, A. L., Salvador, G. M. da S., Castro, S. V. F., Carvalho, N. M. F., & Munoz, R. A. A. (2021). A 3D printer guide for the development and application of electrochemical cells and devices. Frontiers in Chemistry, 9, 684256. https://doi.org/10.3389/fchem.2021.684256
  • Sodagar, A., Bahador, A., Khalil, S., Saffar Shahroudi, A., & Zaman Kassaee, M. (2013). The effect of TiO₂ and SiO₂ nanoparticles on flexural strength of poly(methyl methacrylate) acrylic resins. Journal of Prosthodontic Research, 57(1), 15–19. https://doi.org/10.1016/j.jpor.2012.05.001
  • Tham, W. L., Chow, W. S., & Ishak, Z. A. M. (2010). The effect of 3-(trimethoxysilyl) propyl methacrylate on the mechanical, thermal, and morphological properties of poly(methyl methacrylate)/hydroxyapatite composites. Journal of Applied Polymer Science, 118(1), 218–228. https://doi.org/10.1002/app.32111
  • Varshney, S., Nigam, A., Pawar, S. J., & Mishra, N. (2022). Structural, optical, cytotoxic, and anti-microbial properties of amorphous silica nanoparticles synthesised via hybrid method for biomedical applications. Materials Technology, 37(10), 1504–1515. https://doi.org/10.1080/10667857.2021.1959190
  • Zhang, J., & Xiao, P. (2018). 3D printing of photopolymers. Polymer Chemistry, 9(13), 1530–1540. https://doi.org/10.1039/C8PY00157J
  • Zornoza-Indart, A., & López-Arce, P. (2015). Silica nanoparticles (SiO₂): Influence of relative humidity in stone consolidation. Journal of Cultural Heritage. https://doi.org/10.1016/j.culher.2015.06.002
There are 27 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Material Characterization, Polymers and Plastics, Nanomaterials
Journal Section Research Articles
Authors

Berk Özler 0000-0003-1819-6032

Serdar Yıldırım 0000-0002-3730-3473

Project Number 2021.KB.FEN.046
Early Pub Date June 26, 2025
Publication Date June 27, 2025
Submission Date January 9, 2025
Acceptance Date March 1, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Özler, B., & Yıldırım, S. (2025). Investigation of SiO2 Nanoparticle Reinforced Epoxy Composites Produced by Additive Manufacturing: Effect of Silanization on Conversion Degree and Mechanical Properties. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 4(1), 12-20. https://doi.org/10.69560/cujast.1616786