Research Article
BibTex RIS Cite

Nano-Silikanın Jüt/Cam Elyaf Takviyeli Epoksi Hibrit Kompozitlerin Mekanik Özellikleri Üzerindeki Etkisi

Year 2022, , 399 - 410, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146108

Abstract

Doğal kompozitler, artan çevresel faktörler ve nispeten düşük maliyet nedeniyle son zamanlarda önem kazanmıştır. Biyolojik bozunurlukları, düşük yoğunlukları ve yüksek işlenebilirliklerine rağmen, kompozit malzemelerde tek takviye aşaması olarak doğal liflerin kullanılması, yüksek nem emilimi ve düşük mekanik özellikler gibi dezavantajları nedeniyle bazı zorluklarla karşı karşıyadır. Bu nedenle doğal kompozitler genellikle sentetik liflerle sentezlenir. Bu çalışmada jüt/epoksi kompozitler, cam elyaf tabakaları ve nano-silika parçacıkları ile hibritlenmiş çekme, eğilme ve darbe davranışları incelenmiştir. Kompozit üretiminde ağırlıkça %1, %2 ve %3 oranlarında nano silika partikülleri kullanılmıştır. Üç farklı hibrit konfigürasyonun (G1J6G1, J3G2J3, J2G1J2G1J2) yanı sıra saf jüt/epoksi ve saf cam/epoksi kompozitlerin testleri gerçekleştirildi. Deneysel sonuçlar nano-silika katkısı hem saf hem de hibrit kompozitler üzerinde önemli etkiye sahip olduğunu göstermiştir. Dış yüzeyde cam elyaf tabakası kullanılarak oluşturulan G1J6G1 hibrit konfigürasyonu en iyi gerilme mukavemeti, eğilme mukavemeti ve darbe tokluğunu vermiştir.

References

  • 1. Bledzki, A.K., Gassan, J., 1999. Composites Reinforced with Cellulose Based Fiber. Prog. Polym. Sci., 24, 221-274.
  • 2. Gowda, T.M., Naidu, A.C.B., Chhaya, R., 1999. Some Mechanical Properties of Untreated Jute Fabric-Reinforced Polyester Composites. Composites Part A: Applied Science and Manufacturing, 30(3), 277-284.
  • 3. Mohanty, A.K., Misra, M., Drzal, L.T., 2002. Sustainable Bio-composites from Renewable Resources: Opportunities and Challenges in The Green Materials World. J. Polym. Environ., 10, 19-26.
  • 4. Dwivedi, U.K., Chand, N., 2009. Influence of Fibre Orientation on Friction and Sliding Wear Behaviour of Jute Fibre Reinforced Polyester Composite. Applied Composite Materials, 16(2), 93-100.
  • 5. Gon, D., Das, K., Paul, P., Maity, S., 2012. Jute Composites as Wood Substitute. International Journal of Textile Science, 1(6), 84-93
  • 6. Mohanty, A.K., Misra, M., Hinrichsen, G., 2000. Biofibers, Biodegradable Polymers and Biocomposites: An Overview. Macromolecular Materials and Engineering, 276(1), 1-24
  • 7. Joseph, S., Sreekalab, M.S., Oommena, Z., Koshyc, P., Thomas, S., 2002. A Comparison of The Mechanical Properties of Phenol Formaldehyde Composites Reinforced with Banana Fibres and Glass Fibres. Compos. Sci. Techno1., 62, 1857-1868.
  • 8. Valadez-Gonzales, A., Cetvantes-Uc, J.M., Olayo, R., Herrera Franco, P.J., 1999. Effect of Fibre Surface Treatment on the Fibre-matrix Bond Strength of Natural Fibre Reinforced Composites. Composites, Part B, 30(3), 309-320.
  • 9. Baiardo, M., Zini, E., Scandola, M., 2004. Flax Fibre-Polyester Composites. J. Compos.: Part A, 35, 703-710.
  • 10. George, J., Sreekala, M.S., Thomas, S., 2002. A Review on Interface Modification and Characterization of Natural Fibre Reinforced Plastic Composites. Ploym. Eng. Sci., 41(9), 1471-1485.
  • 11. Singh, H., Inder Preet Singh, J., Singh, S., Dhawan, V., Kumar Tiwari, S., 2018. A Brief Review of Jute Fibre and its Composites. Materials Today: Proceedings, 5(14), 28427–28437.
  • 12. Mochane, M.J., Mokhena, T.C., Mokhothu, T.H., Mtibe, A., Sadiku, E.R., Ray, S.S., Daramola, O.O., 2019. Recent Progress on Natural Fiber Hybrid Composites for Advanced Applications: A Review. Express Polymer Letters, 13(2), 159–198.
  • 13. Ashworth, S., Rongong, J., Wilson, P., Meredith, J., 2016. Mechanical and Damping Properties of Resin Transfer Moulded Jutecarbon Hybrid Composites. Composites Part B: Engineering, 105, 60–66.
  • 14. Ali, A., Nasir, M.A., Khalid, M.Y., Nauman, S., Shaker, K., Khushnood, S., Altaf, K., Zeeshan, M., Hussain, A., 2019. Experimental and Numerical Characterization of Mechanical Properties of Carbon/jute Fabric Reinforced Epoxy Hybrid Composites. J Mech Sci Technol, 33, 4217–4226.
  • 15. Braga, R.A., Magalhaes, P.A.A., 2015. Analysis of the Mechanical and Thermal Properties of Jute and Glass Fiber as Reinforcement Epoxy Hybrid Composites. Materials Science and Engineering: C, 56, 269-273.
  • 16. Rosa, I.M., Santulli, C., Sarasini, F., Valente, M., 2009. Post-impact Damage Characterization of Hybrid Configurations of Jute/glass Polyester Laminates Using Acoustic Emission and IR Thermography. Composites Science and Technology, 69(7), 1142-1150.
  • 17. Akil, H.M., Santulli, C., Sarasini, F., Tirillò, J., Valente, T., 2014. Environmental Effects on the Mechanical Behaviour of Pultruded Jute/glass Fibre-reinforced Polyester Hybrid Composites. Composites Science and Technology, 94, 62-70.
  • 18. Akil, H.M., De Rosa, I.M., Santulli, C., Sarasini, F., 2010. Flexural Behaviour of Pultruded Jute/glass and Kenaf/glass Hybrid Composites Monitored Using Acoustic Emission. Materials Science and Engineering A, 527(12), 2942–2950.
  • 19. Ramesh, M., Palanikumar, K., Reddy, K.H., 2013. Comparative Evaluation on Properties of Hybrid Glass Fiber-sisal/jute Reinforced Epoxy Composites. Procedia Engineering, 51, 745-750.
  • 20. Ahmed, K.S., Vijayarangan, S., 2008. Tensile, Flexural and Interlaminar Shear Properties of Woven Jute and Jute-glass Fabric Reinforced Polyester Composites. Journal of Materials Processing Technology, 207(1-3), 330–335.
  • 21. Rafiquzzaman, M., Islam, M., Rahman, H., Talukdar, S., Hasan, N., 2016. Mechanical Property Evaluation of Glass-jute Fiber Reinforced Polymer Composites, Polymers for Advanced Technologies, 27(10), 1308–1316.
  • 22. Saba, N., Tahir, P., Jawaid, M., 2014. A Review on Potentiality of Nano Filler/natural Fiber Filled Polymer Hybrid Composites, Polymers, 6(8), 2247–2273.
  • 23. Afrouzian, A., Movahhedi Aleni, H., Liaghat, G., Ahmadi, H., 2017. Effect of Nano-particles on the Tensile, Flexural, and Perforation Properties of The Glass/epoxy Composites. Journal of Reinforced Plastics and Composites, 36(12), 900–916.
  • 24. Kallagunta, H., Tate, J.S., 2019. Low-velocity Impact Behavior of Glass Fiber Epoxy Composites Modified with Nanoceramic Particles. Journal of Composite Materials, 54(16), 2217-2228.
  • 25. Uddin, M.F., Sun, C.T., 2008. Strength of Unidirectional Glass/epoxy Composite with Silica Nanoparticle-enhanced Matrix. Composites Science and Technology, 68(7-8), 1637–1643.
  • 26. ASTM D790-10, 2010, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA
  • 27. ISO, EN: 179-1. 2000, Plastics-determination of Charpy Impact Properties-part 1: Noninstrumented Impact Test. European Committee for Standardization. CEN, Bruxelles, Belgium.
  • 28. ASTM D638-10, 2010, Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA
  • 29. Yixin, X., Lei, L., Sixun, Z., 2016. Photophysical and Dielectric Properties of Nanostructured Epoxy Thermosets Containing Poly (N-Vinylcarbazole) Nanophases, Polymer 98, 344-52.
  • 30. Jingang, L., Houluo, C., Lei, L., Sixun, Z., 2015. Nanostructured Thermosets Containing Π-Conjugated Polymer Nanophases: Morphology, Dielectric and Thermal Conductive Properties. Polymer, 69, 193-203.
  • 31.Kwon, D.J., Shin, P.S., Kim, J.H., Baek, Y.M., Park, H.S., DeVries, K.L., Park, J.M., 2017. Interfacial Properties and Thermal Aging of Glass Fiber/epoxy Composites Reinforced with Sic And SiO2 Nanoparticles. Composites Part B, 130, 46-53

Influence of Nano-Silica on the Mechanical Properties of Jute/Glass Fiber Reinforced Epoxy Hybrid Composites

Year 2022, , 399 - 410, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146108

Abstract

Natural composites have gained importance recently due to increasing environmental factors and relatively low cost. Although their biodegradability, low density, and high processability, the use of natural fibers in composite materials as the only reinforcement phase faces with some challenges due to their disadvantages such as high moisture absorption and low mechanical properties. To overcome these issues, the natural fibers are generally utilized in composite materials by synthesizing with synthetic fibers. In this context, jute/epoxy composites have been hybridized with glass fiber layers and nano-silica particles to improve low mechanical properties, and the contributions of hybridization on mechanical properties are investigated through performing tensile, bending, and impact tests. Nano-silica particles in the ratio of 1%, 2%, and 3% by weight have been used in composite production. Three different hybrid configurations (G1J6G1, J3G2J3, J2G1J2G1J2) are tested as well as pure jute/epoxy and pure glass/epoxy composites. According to the experimental results, nano-silica additive has a significant effect on both non-hybrid and hybrid fiber reinforced composites. By using the glass fiber layer on the outer surface, the
highest tensile strength, flexural strength, and impact behavior have been achieved in the G1J6G1 hybrid configuration.

References

  • 1. Bledzki, A.K., Gassan, J., 1999. Composites Reinforced with Cellulose Based Fiber. Prog. Polym. Sci., 24, 221-274.
  • 2. Gowda, T.M., Naidu, A.C.B., Chhaya, R., 1999. Some Mechanical Properties of Untreated Jute Fabric-Reinforced Polyester Composites. Composites Part A: Applied Science and Manufacturing, 30(3), 277-284.
  • 3. Mohanty, A.K., Misra, M., Drzal, L.T., 2002. Sustainable Bio-composites from Renewable Resources: Opportunities and Challenges in The Green Materials World. J. Polym. Environ., 10, 19-26.
  • 4. Dwivedi, U.K., Chand, N., 2009. Influence of Fibre Orientation on Friction and Sliding Wear Behaviour of Jute Fibre Reinforced Polyester Composite. Applied Composite Materials, 16(2), 93-100.
  • 5. Gon, D., Das, K., Paul, P., Maity, S., 2012. Jute Composites as Wood Substitute. International Journal of Textile Science, 1(6), 84-93
  • 6. Mohanty, A.K., Misra, M., Hinrichsen, G., 2000. Biofibers, Biodegradable Polymers and Biocomposites: An Overview. Macromolecular Materials and Engineering, 276(1), 1-24
  • 7. Joseph, S., Sreekalab, M.S., Oommena, Z., Koshyc, P., Thomas, S., 2002. A Comparison of The Mechanical Properties of Phenol Formaldehyde Composites Reinforced with Banana Fibres and Glass Fibres. Compos. Sci. Techno1., 62, 1857-1868.
  • 8. Valadez-Gonzales, A., Cetvantes-Uc, J.M., Olayo, R., Herrera Franco, P.J., 1999. Effect of Fibre Surface Treatment on the Fibre-matrix Bond Strength of Natural Fibre Reinforced Composites. Composites, Part B, 30(3), 309-320.
  • 9. Baiardo, M., Zini, E., Scandola, M., 2004. Flax Fibre-Polyester Composites. J. Compos.: Part A, 35, 703-710.
  • 10. George, J., Sreekala, M.S., Thomas, S., 2002. A Review on Interface Modification and Characterization of Natural Fibre Reinforced Plastic Composites. Ploym. Eng. Sci., 41(9), 1471-1485.
  • 11. Singh, H., Inder Preet Singh, J., Singh, S., Dhawan, V., Kumar Tiwari, S., 2018. A Brief Review of Jute Fibre and its Composites. Materials Today: Proceedings, 5(14), 28427–28437.
  • 12. Mochane, M.J., Mokhena, T.C., Mokhothu, T.H., Mtibe, A., Sadiku, E.R., Ray, S.S., Daramola, O.O., 2019. Recent Progress on Natural Fiber Hybrid Composites for Advanced Applications: A Review. Express Polymer Letters, 13(2), 159–198.
  • 13. Ashworth, S., Rongong, J., Wilson, P., Meredith, J., 2016. Mechanical and Damping Properties of Resin Transfer Moulded Jutecarbon Hybrid Composites. Composites Part B: Engineering, 105, 60–66.
  • 14. Ali, A., Nasir, M.A., Khalid, M.Y., Nauman, S., Shaker, K., Khushnood, S., Altaf, K., Zeeshan, M., Hussain, A., 2019. Experimental and Numerical Characterization of Mechanical Properties of Carbon/jute Fabric Reinforced Epoxy Hybrid Composites. J Mech Sci Technol, 33, 4217–4226.
  • 15. Braga, R.A., Magalhaes, P.A.A., 2015. Analysis of the Mechanical and Thermal Properties of Jute and Glass Fiber as Reinforcement Epoxy Hybrid Composites. Materials Science and Engineering: C, 56, 269-273.
  • 16. Rosa, I.M., Santulli, C., Sarasini, F., Valente, M., 2009. Post-impact Damage Characterization of Hybrid Configurations of Jute/glass Polyester Laminates Using Acoustic Emission and IR Thermography. Composites Science and Technology, 69(7), 1142-1150.
  • 17. Akil, H.M., Santulli, C., Sarasini, F., Tirillò, J., Valente, T., 2014. Environmental Effects on the Mechanical Behaviour of Pultruded Jute/glass Fibre-reinforced Polyester Hybrid Composites. Composites Science and Technology, 94, 62-70.
  • 18. Akil, H.M., De Rosa, I.M., Santulli, C., Sarasini, F., 2010. Flexural Behaviour of Pultruded Jute/glass and Kenaf/glass Hybrid Composites Monitored Using Acoustic Emission. Materials Science and Engineering A, 527(12), 2942–2950.
  • 19. Ramesh, M., Palanikumar, K., Reddy, K.H., 2013. Comparative Evaluation on Properties of Hybrid Glass Fiber-sisal/jute Reinforced Epoxy Composites. Procedia Engineering, 51, 745-750.
  • 20. Ahmed, K.S., Vijayarangan, S., 2008. Tensile, Flexural and Interlaminar Shear Properties of Woven Jute and Jute-glass Fabric Reinforced Polyester Composites. Journal of Materials Processing Technology, 207(1-3), 330–335.
  • 21. Rafiquzzaman, M., Islam, M., Rahman, H., Talukdar, S., Hasan, N., 2016. Mechanical Property Evaluation of Glass-jute Fiber Reinforced Polymer Composites, Polymers for Advanced Technologies, 27(10), 1308–1316.
  • 22. Saba, N., Tahir, P., Jawaid, M., 2014. A Review on Potentiality of Nano Filler/natural Fiber Filled Polymer Hybrid Composites, Polymers, 6(8), 2247–2273.
  • 23. Afrouzian, A., Movahhedi Aleni, H., Liaghat, G., Ahmadi, H., 2017. Effect of Nano-particles on the Tensile, Flexural, and Perforation Properties of The Glass/epoxy Composites. Journal of Reinforced Plastics and Composites, 36(12), 900–916.
  • 24. Kallagunta, H., Tate, J.S., 2019. Low-velocity Impact Behavior of Glass Fiber Epoxy Composites Modified with Nanoceramic Particles. Journal of Composite Materials, 54(16), 2217-2228.
  • 25. Uddin, M.F., Sun, C.T., 2008. Strength of Unidirectional Glass/epoxy Composite with Silica Nanoparticle-enhanced Matrix. Composites Science and Technology, 68(7-8), 1637–1643.
  • 26. ASTM D790-10, 2010, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA
  • 27. ISO, EN: 179-1. 2000, Plastics-determination of Charpy Impact Properties-part 1: Noninstrumented Impact Test. European Committee for Standardization. CEN, Bruxelles, Belgium.
  • 28. ASTM D638-10, 2010, Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA
  • 29. Yixin, X., Lei, L., Sixun, Z., 2016. Photophysical and Dielectric Properties of Nanostructured Epoxy Thermosets Containing Poly (N-Vinylcarbazole) Nanophases, Polymer 98, 344-52.
  • 30. Jingang, L., Houluo, C., Lei, L., Sixun, Z., 2015. Nanostructured Thermosets Containing Π-Conjugated Polymer Nanophases: Morphology, Dielectric and Thermal Conductive Properties. Polymer, 69, 193-203.
  • 31.Kwon, D.J., Shin, P.S., Kim, J.H., Baek, Y.M., Park, H.S., DeVries, K.L., Park, J.M., 2017. Interfacial Properties and Thermal Aging of Glass Fiber/epoxy Composites Reinforced with Sic And SiO2 Nanoparticles. Composites Part B, 130, 46-53
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Erkliğ This is me 0000-0003-3906-3415

Ömer Yavuz Bozkurt This is me 0000-0003-0685-8748

Wassan Falah Al-tekreetı This is me 0000-0003-3436-4884

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Erkliğ, A., Bozkurt, Ö. Y., & Al-tekreetı, W. F. (2022). Influence of Nano-Silica on the Mechanical Properties of Jute/Glass Fiber Reinforced Epoxy Hybrid Composites. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 399-410. https://doi.org/10.21605/cukurovaumfd.1146108