Research Article
BibTex RIS Cite

Estimated Fuel Properties of Luffa Aegyptiaca as a Possible Feedstock for Biodiesel Production

Year 2023, , 401 - 410, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1333973

Abstract

The world's expanding human population and rising standard of living result in a rise in energy consumption. Since fossil fuel reserves are mostly exploited to fulfil the expanding energy demand, this makes it more difficult to get energy. Due to the non-renewable nature of fossil fuel resources and the possibility of energy supply issues occurring as a result of globalization, access to energy becomes challenging at this point. However, switching to alternative and environmentally beneficial fuel sources is now a need because of the harm that their widespread usage has caused to the environment and the diminishing resources that are being used up. The loofah seed Luffa Aegyptiaca, which is grown mostly in Turkey's Hatay region, is discussed in this paper. Fatty acids in the oil produced from Luffa aegyptiaca seeds were identified by analysis. Oleic and linoleic acids were found to be the primary fatty acids controlling the combustion characteristics of biodiesel fuel. These acids were found to be, respectively, 97.8318 and 129.1163. Using the Biodiesel Analyzer v1.2, the physicochemical characteristics of biodiesel fuel were identified. It was determined that biodiesel fuel made from Luffa aegyptiaca seed might be used as a substitute for diesel fuel.

References

  • 1. Choongsik, B., Jaeheun, K., 2017. Alternative Fuels for Internal Combustion Engines. Proceedings of the Combustion Institute, 36(3), 3389-3413.
  • 2. Çelikten, İ., Arslan, M.. A., 2008. Investigation of the Effects of Diesel Fuel, Canola Oil and Soybean Oil Methyl Esters on The Performance and Emissions of a Direct Sprayed Diesel Engine. Gazi University Engineering Architecture Faculty Journal, 23(4), 829-836.
  • 3. Şimşek, D., Çolak, N.Y., 2019. Investigation of The Effect of Biodiesel/Propanol Fuel Mixtures on Diesel Engine Emissions. El-Cezeri Journal of Science and Engineering, 6(1), 166-174.
  • 4. İçingür, Y., Koçak, M.S., 2006. Investigation of Performance and Emission Parameters as a Diesel Fuel Alternative of Hazelnut Oil Methyl Ester. Polytechnic Journal, 9(2), 119-124.
  • 5. Sayyed S., Kumar, R., Kulkarni, D., 2022. Experimental Investigation for Evaluating the Performance and Emission Characteristics of DICI Engine Fueled with Dual Biodiesel Diesel Blends of Jatropha. Karanja. Mahua, and Neem, Energy 238, 121787.
  • 6. Kibazohi, O., Sangwan, R.S., 2011. Vegetable Oil Production Potential from Jatropha Curcas, Croton Megalocarpus, Aleurites Moluccana, Moringa oleifera and Pachira Glabra: Assessment of Renewable Energy Resources for Bio-energy Production in Africa. Biomass and Bioenergy, 35(3), 1352-1356.
  • 7. Al-Tikrity, E.T.B., Fadhi, A.B.L., Ibraheem, K.K., 2017. Biodiesel Production from Bitter Almond Oil as New Non-edible Oil Feedstock. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(7), 649-656.
  • 8. Fadhil, A.B., Saleh, L.A., Altamer, D.H., 2020. Production of Biodiesel from Non-edible Oil, Wild Mustard (Brassica Juncea L.) Seed Oil Through Cleaner Routes. Energy Sources, Part A: Recovery Utilization, and Environmental Effects, 42(15), 1831-1843.
  • 9. Perumal, G., Mahendradas, D.K., 2022. Biodiesel Production from Bauhinia Variegata Seeds oil Using Homogeneous Catalyst. Petroleum Science and Technology, 40(7), 857-870.
  • 10. Kavitha, M.S., Murugavelh, S., 2021. Biodiesel Production Rosea Reactive Extraction of Sterculia and Waste Cooking Oil Blend Using an Acid Catalyst. International Journal of Ambient Energy, 42(12), 1435-1440.
  • 11. Sirigeri, S., Vadiraj, K.T., Belagali, S.L., 2022. Tabebuia Rosea: a Prospective Non-edible Biodiesel Feedstock. Biofuels, 13(1), 17-19.
  • 12. Kshirsagar, C.M., Anand, R., 2017. Homogeneous Catalysed Biodiesel Synthesis from Alexandrian Laurel (Calophyllum inophyllum L.) Kernel Oil Using Ortho-phosphoric Acid as a Pretreatment Catalyst. International Journal of Green Energy, 14(9), 754-764.
  • 13. Vázquez, V.Á., Estrada, R.A.D., Flores, M.M.A., Alvarado, C.E., Aguado, H.C.C., 2020. Transesterification of Non-edible Castor Oil (Ricinus communis L.) from Mexico for Biodiesel Production: a Physicochemical Characterization. Biofuels, 11(7), 753-762.
  • 14. Yatish K.V., Lalithamba H.S., Suresh R., Omkaresh, B.R., 2018. Synthesis of Biodiesel from Garcinia Gummi-gutta, Terminalia Belerica and Aegle Marmelos Seed Oil and Investigation of Fuel Properties, Biofuels, 9(1), 121-128.
  • 15. Yadav, A.K., Khan, M.E., Pal A., Dubey, A.M., 2016. Biodiesel Production from Nerium Oleander (Thevetia peruviana) Oil Through Conventional and Ultrasonic Irradiation Methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(23), 3447-3452.
  • 16. Abdulvahitoğlu, A., 2019. Predicted Fuel Characteristics of Prunus Avium Seed Oil as a Candidate for Biodiesel Production. International Journal of Automotive Engineering and Technologies, 8(4), 165-171.
  • 17. Abdulvahitoğlu, A., 2018. Evaluation of the Fuel Quality Values of Bay Laurel (Laurus nobilis L.) Oil as a Biodiesel Feedstock. Biofuels, 9(1), 95-100.
  • 18. Yaman, İ., 2017. Lif kabağında (Luffa cylindrica M. Roem) Farklı Azot Dozlarının Verim ve Bazı Tarımsal Özellikler Üzerine Etkisi. Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı, Hatay, 55.
  • 19. Mert, M., 2009. Lif Bitkileri. Nobel Akademik Yayınlar, 448.
  • 20. Shop-Bewertungen für Plant Flower Seeds https://www.etsy.com/at/listing/956019256/luffa-aegyptiaca-o-sponge-gourd-smaragd accessed, Access date: 05.08.2022.
  • 21. Biodiesel analyzer http://brteam.org/analysis /#id02, Access date: 05.08.2022
  • 22. Anwar, M., Rasul, M.G., Ashwath, N., 2019. The Efficacy of Multiple-criteria Design Matrix for Biodiesel Feedstock Selection. Energy Conversion and Management, 198, 111790.
  • 23. Giakoumis, E.G., Sarakatsanis, C.K., 2018. Estimation of Biodiesel Cetane Number, Density, Kinematic Viscosity and Heating Values from its Fatty Acid Composition. Fuel, 222, 574-585.
  • 24. Boz, N., Kara, M., Sunal, O., Alptekin, E., Değirmenbaşı, N., 2009. Investigation of the Fuel Properties of Biodiesel Produced Over an Alumina-based Solid Catalyst. Turk J Chem, 33, 433-442.
  • 25. Yaşar, H., Büyükkaya, E., Soyhan, H.S., Taymaz, İ., 2016. İçten Yanmalı Motorlar Mühendislik Temelleri [Engineering Fundamentals of the Internal Combustion Engine-Willard W. Pulkrabek], Güven Yayıncılık, İzmir, 480.
  • 26. Koç, D.D., 2022. Numerical Investigation of Exhaust Emissions by using Various Biodiesel in a Compression Ignition Engine. Yüksek Lisans Tezi, Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Adana, 89.

Luffa Aegyptiaca'nın Potansiyel Biodizel Üretimi İçin Olası Bir Hammadde Olarak Tahmini Yakıt Özellikleri

Year 2023, , 401 - 410, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1333973

Abstract

Dünya genelindeki artan insan nüfusu, yükselen yaşam standartlarıyla birleştiğinde enerji taleplerini arttırmaktadır. Bu durum, fosil yakıt rezervlerinin çoğunlukla yükselen enerji talebini karşılamak için kullanılmasına bağlı olarak enerji erişimini zorlaştırmaktadır. Fosil yakıt kaynaklarının yenilenebilir olmayan doğası ve küreselleşme ile ortaya çıkan enerji arzı sorunları potansiyeli nedeniyle enerjiye erişim bu aşamada zorlaşmaktadır. Öte yandan, yaygın kullanımları sonucunda çevreye verilen zararlar ve her geçen gün azalan kaynakların tükenmesi göz önüne alındığında, alternatif ve ekolojik dostu yakıt kaynaklarına geçiş yapmak günümüzde kaçınılmaz hale gelmiştir. Bu çalışmada, özellikle Türkiye'nin Hatay bölgesinde yetiştirilen Luffa Aegyptiaca adı verilen loofah tohumu ele alınmaktadır. Luffa Aegyptiaca tohumları kullanılarak elde edilen yağ analiz edilmiş ve yağ asitleri belirlenmiştir. Biyodizel yakıtın yakıt özelliklerini etkileyen başlıca yağ asitleri oleik ve linoleik asit olarak belirlenmiştir. Bu asitler sırasıyla 97.8318 ve 129.1163 olarak belirlenmiştir. Biyodizel yakıtın fizikokimyasal özellikleri Biodiesel Analyzer v1.2 kullanılarak belirlenmiştir. Luffa aegyptiaca tohumu biyodizel yakıtın, dizel yakıtla karıştırıldığında potansiyel bir yakıt kaynağı olduğu sonucuna varılmıştır.

References

  • 1. Choongsik, B., Jaeheun, K., 2017. Alternative Fuels for Internal Combustion Engines. Proceedings of the Combustion Institute, 36(3), 3389-3413.
  • 2. Çelikten, İ., Arslan, M.. A., 2008. Investigation of the Effects of Diesel Fuel, Canola Oil and Soybean Oil Methyl Esters on The Performance and Emissions of a Direct Sprayed Diesel Engine. Gazi University Engineering Architecture Faculty Journal, 23(4), 829-836.
  • 3. Şimşek, D., Çolak, N.Y., 2019. Investigation of The Effect of Biodiesel/Propanol Fuel Mixtures on Diesel Engine Emissions. El-Cezeri Journal of Science and Engineering, 6(1), 166-174.
  • 4. İçingür, Y., Koçak, M.S., 2006. Investigation of Performance and Emission Parameters as a Diesel Fuel Alternative of Hazelnut Oil Methyl Ester. Polytechnic Journal, 9(2), 119-124.
  • 5. Sayyed S., Kumar, R., Kulkarni, D., 2022. Experimental Investigation for Evaluating the Performance and Emission Characteristics of DICI Engine Fueled with Dual Biodiesel Diesel Blends of Jatropha. Karanja. Mahua, and Neem, Energy 238, 121787.
  • 6. Kibazohi, O., Sangwan, R.S., 2011. Vegetable Oil Production Potential from Jatropha Curcas, Croton Megalocarpus, Aleurites Moluccana, Moringa oleifera and Pachira Glabra: Assessment of Renewable Energy Resources for Bio-energy Production in Africa. Biomass and Bioenergy, 35(3), 1352-1356.
  • 7. Al-Tikrity, E.T.B., Fadhi, A.B.L., Ibraheem, K.K., 2017. Biodiesel Production from Bitter Almond Oil as New Non-edible Oil Feedstock. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(7), 649-656.
  • 8. Fadhil, A.B., Saleh, L.A., Altamer, D.H., 2020. Production of Biodiesel from Non-edible Oil, Wild Mustard (Brassica Juncea L.) Seed Oil Through Cleaner Routes. Energy Sources, Part A: Recovery Utilization, and Environmental Effects, 42(15), 1831-1843.
  • 9. Perumal, G., Mahendradas, D.K., 2022. Biodiesel Production from Bauhinia Variegata Seeds oil Using Homogeneous Catalyst. Petroleum Science and Technology, 40(7), 857-870.
  • 10. Kavitha, M.S., Murugavelh, S., 2021. Biodiesel Production Rosea Reactive Extraction of Sterculia and Waste Cooking Oil Blend Using an Acid Catalyst. International Journal of Ambient Energy, 42(12), 1435-1440.
  • 11. Sirigeri, S., Vadiraj, K.T., Belagali, S.L., 2022. Tabebuia Rosea: a Prospective Non-edible Biodiesel Feedstock. Biofuels, 13(1), 17-19.
  • 12. Kshirsagar, C.M., Anand, R., 2017. Homogeneous Catalysed Biodiesel Synthesis from Alexandrian Laurel (Calophyllum inophyllum L.) Kernel Oil Using Ortho-phosphoric Acid as a Pretreatment Catalyst. International Journal of Green Energy, 14(9), 754-764.
  • 13. Vázquez, V.Á., Estrada, R.A.D., Flores, M.M.A., Alvarado, C.E., Aguado, H.C.C., 2020. Transesterification of Non-edible Castor Oil (Ricinus communis L.) from Mexico for Biodiesel Production: a Physicochemical Characterization. Biofuels, 11(7), 753-762.
  • 14. Yatish K.V., Lalithamba H.S., Suresh R., Omkaresh, B.R., 2018. Synthesis of Biodiesel from Garcinia Gummi-gutta, Terminalia Belerica and Aegle Marmelos Seed Oil and Investigation of Fuel Properties, Biofuels, 9(1), 121-128.
  • 15. Yadav, A.K., Khan, M.E., Pal A., Dubey, A.M., 2016. Biodiesel Production from Nerium Oleander (Thevetia peruviana) Oil Through Conventional and Ultrasonic Irradiation Methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38(23), 3447-3452.
  • 16. Abdulvahitoğlu, A., 2019. Predicted Fuel Characteristics of Prunus Avium Seed Oil as a Candidate for Biodiesel Production. International Journal of Automotive Engineering and Technologies, 8(4), 165-171.
  • 17. Abdulvahitoğlu, A., 2018. Evaluation of the Fuel Quality Values of Bay Laurel (Laurus nobilis L.) Oil as a Biodiesel Feedstock. Biofuels, 9(1), 95-100.
  • 18. Yaman, İ., 2017. Lif kabağında (Luffa cylindrica M. Roem) Farklı Azot Dozlarının Verim ve Bazı Tarımsal Özellikler Üzerine Etkisi. Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü Tarla Bitkileri Anabilim Dalı, Hatay, 55.
  • 19. Mert, M., 2009. Lif Bitkileri. Nobel Akademik Yayınlar, 448.
  • 20. Shop-Bewertungen für Plant Flower Seeds https://www.etsy.com/at/listing/956019256/luffa-aegyptiaca-o-sponge-gourd-smaragd accessed, Access date: 05.08.2022.
  • 21. Biodiesel analyzer http://brteam.org/analysis /#id02, Access date: 05.08.2022
  • 22. Anwar, M., Rasul, M.G., Ashwath, N., 2019. The Efficacy of Multiple-criteria Design Matrix for Biodiesel Feedstock Selection. Energy Conversion and Management, 198, 111790.
  • 23. Giakoumis, E.G., Sarakatsanis, C.K., 2018. Estimation of Biodiesel Cetane Number, Density, Kinematic Viscosity and Heating Values from its Fatty Acid Composition. Fuel, 222, 574-585.
  • 24. Boz, N., Kara, M., Sunal, O., Alptekin, E., Değirmenbaşı, N., 2009. Investigation of the Fuel Properties of Biodiesel Produced Over an Alumina-based Solid Catalyst. Turk J Chem, 33, 433-442.
  • 25. Yaşar, H., Büyükkaya, E., Soyhan, H.S., Taymaz, İ., 2016. İçten Yanmalı Motorlar Mühendislik Temelleri [Engineering Fundamentals of the Internal Combustion Engine-Willard W. Pulkrabek], Güven Yayıncılık, İzmir, 480.
  • 26. Koç, D.D., 2022. Numerical Investigation of Exhaust Emissions by using Various Biodiesel in a Compression Ignition Engine. Yüksek Lisans Tezi, Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Adana, 89.
There are 26 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Mechanical Engineering (Other), Automotive Combustion and Fuel Engineering
Journal Section Articles
Authors

Duygu Durdu Koç 0000-0002-4400-5714

Aslı Abdulvahitoğlu 0000-0002-3603-6748

Publication Date July 28, 2023
Published in Issue Year 2023

Cite

APA Koç, D. D., & Abdulvahitoğlu, A. (2023). Estimated Fuel Properties of Luffa Aegyptiaca as a Possible Feedstock for Biodiesel Production. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 401-410. https://doi.org/10.21605/cukurovaumfd.1333973