Research Article
BibTex RIS Cite

Flow Structures Downstream of Square-shaped Cylinder in Channel

Year 2021, Volume: 36 Issue: 3, 607 - 614, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1004989

Abstract

Experiments were conducted to investigate the flow topology downstream of a square-shaped cylinder situated in a straight channel. The critical parameters such as the Reynolds number (Re = 500) and the blockage ratio of the square-shaped cylinder (25%) were determined in light of the literature. A Particle image velocimetry (PIV) system was used to obtain the instantaneous velocity vector map. The flow structures, including the time-mean vorticity distribution, <ω> instantaneous and time-mean streamline topology, Ψ, distributions of streamwise velocity fluctuations, urms, turbulent kinetic energy, TKE are presented with Figures.

References

  • 1. Zdravkovich, M.M., 1997. Flow around Circular Cylinders, Vol. 1: Fundamentals. Oxford University Press, New York.
  • 2. Williamson, C.H.K., 1996. Vortex Dynamics in the Cylinder Wake. Ann. Rev. Fluid Mech., 28, 477–539.
  • 3. Yoon, D.H., Yang, K.S., Choi, C.B., 2010. Flow Past a Square-shaped Cylinder with an Angle of Incidence. Physics of Fluids, 22, 043603.
  • 4. Jiang, H., Cheng, L., 2020. Flow Separation Around a Square-shaped Cylinder at Low to Moderate Reynolds Numbers. Physics of Fluids, 32, 044103.
  • 5. Zafar, F., Alam, M., 2019. Flow Structure Around and Heat Transfer from Cylinders Modified from Square to Circular. Physics of Fluids, 31, 083604.
  • 6. Davis, R.W., Moore, E.F., Purtell, L.P., 1984. A Numerical-experimental Study of Confined Flow Around Rectangular-shaped Cylinders. Physics of Fluids, 27, 46- 59.
  • 7. Camarri, S., Giannetti, F., 2007. On the Inversion of the von Karman Street in the Wake of a Confined Square-shaped Cylinder. Journal of Fluid Mechanics, 574, 169-178.
  • 8. Rahnama, M., Hadi-Moghaddam, H., 2005. Numerical Investigation of Convective Heat Transfer in Unsteady Laminar Flow over a Square-shaped Cylinder in a Channel. Heat Transfer Engineering, 26, 21-29.
  • 9. Sharma, A., Eswaran, V., 2005. Effect of Channel Confinement on the Two-dimensional Laminar Flow and Heat Transfer across a Square-shaped Cylinder. Numerical Heat Transfer, Part A, 47, 79–107.
  • 10.Reyes, M., Velazquez, A., Martin, E., Arias, J.R., 2013. Experimental Study on the Confined 3D Laminar Flow Past a Square Prism with a High Blockage Ratio. International Journal of Heat and Fluid Flow, 44, 444–457.
  • 11. Athinarayanan, A.S.K., Gurunathan, M., Parthasarathy, R.K., Taler, J., Oclon, P., Taler, D., 2019. Numerical Investigation of Heat Transfer from Flow Over Square-shaped Cylinder Placed in a Confined Channel Using Cu-water Nanofluid. Thermal Science, 23, 1367-1380.
  • 12. Dhiman, A.K., Chhabra, R.P., Eswaran, V., 2005. Flow and Heat Transfer Across a Confined Square-shaped Cylinder in the Steady Flow Regime: Effect of Peclet Number. International Journal of Heat and Mass Transfer, 48, 4598–4614.
  • 13. Dhiman, A.K., Chhabra, R.P., Eswaran, V., 2008. Steady Flow Across a Confined Square-shaped Cylinder: Effects of Power-law Index and Blockage Ratio. J. Non-Newtonian Fluid Mech., 148, 141–150
  • 14. Hegedűs, F., Hős, C., Pandula, Z., Kullmann, L., 2010. Measurement on the Cavitating Vortex Shedding Behind Rectangular-shaped Obstacles. IOP Conf. Ser.: Earth Environmental Science, 12, 012066.
  • 15. Shadaram, A., Fard, M.A., Rostamy, N., 2008. Experimental Study of Near Wake Flow Behind a Rectangular-shaped Cylinder American Journal of Applied Science, 5, 917-926.
  • 16. Farhadi, M., Rahnama, M., 2005. Three-dimensional Study of Separated Flow Over a Square-shaped Cylinder by Large Eddy Simulation. Proc. IMechE Part G: J. Aerospace Engineering, 219, 225-234
  • 17. Kim, D.H., Yang, K.S., Senda, M., 2004. Large Eddy Simulation of Turbulent Flow Past a Square-shaped Cylinder Confined in a Channel. Computers & Fluids, 33, 81–96.
  • 18. Nakagawa, S., Senda, M., Kikkawa, S., Wakasugi, H., Hiraide, A., 1998. Heat Transfer in Channel Flow Around a Rectangular-shaped Cylinder. Heat Transfer-Japanese Research, 27, 84-97.
  • 19. Nakagawa, S., Nitta, K., Senda, M., 1999. An Experimental Study on Unsteady Turbulent Near Wake of a Rectangular-shaped Cylinder in Channel Flow. Experiments in Fluids, 27, 284-294.
  • 20. Ortega-Casanova, J., 2017. On the Onset of Vortex Shedding from 2D Confined Rectangular-shaped Cylinders Having Different Aspect Ratios: Application to Promote Mixing Fluids. Chemical Engineering & Processing: Process Intensification, 120, 81-92.
  • 21.Rosales, J.L., Ortega, A., Humphrey, L.A.C., 2000. A Numerical Investigation of the Convective Heat Transfer in Unsteady Laminar Flow Past a Single and Tandem Pair of Square-shaped cylinders in a Channel. Numerical Heat Transfer, Part A, 38:443-465.
  • 22. Kurtulmuş, N., Zontul, H., Sahin, B., 2020. Heat Transfer and Flow Characteristics in a Sinusoidally Curved Converging-diverging Channel. International Journal of Thermal Sciences 148, 106163.
  • 23.Chen, T.Y., Du, R.K., 2003. Effects of Velocity Fluctuations on Heat Transfer Enhancement. Experiments in Fluids, 34, 548-555

Düz Kanal İçerisine Yerleştirilmiş Kare Şekilli Silindir Ardındaki Akış Yapısı

Year 2021, Volume: 36 Issue: 3, 607 - 614, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1004989

Abstract

Bu çalışmada, düz kanal içerisine yerleştirilmiş kare silindir ardındaki akış yapısını araştırma amacıyla deneyler gerçekleştirilmiştir. Çalışmadaki belirleyici parametreler, Reynolds sayısı, Re ve bloklama oranı, β sırasıyla 500 ve %25 olarak literatür doğrultusunda belirlenmiştir. Çalışmada, anlık hız alanını ölçmek için, parçacık görüntülemeli hız ölçüm sistemi (PIV) sistemi kullanılmıştır. Zaman ortalama eşdeğer girdaplar,<ω>, ortalama ve anlık akım çizgileri, Ψ, akım yönündeki hız çalkantılarının karelerinin karekökü, urms, türbülans kinetik enerji, TKE dağılımını içeren akış yapıları şekillerle sunulmuştur.

References

  • 1. Zdravkovich, M.M., 1997. Flow around Circular Cylinders, Vol. 1: Fundamentals. Oxford University Press, New York.
  • 2. Williamson, C.H.K., 1996. Vortex Dynamics in the Cylinder Wake. Ann. Rev. Fluid Mech., 28, 477–539.
  • 3. Yoon, D.H., Yang, K.S., Choi, C.B., 2010. Flow Past a Square-shaped Cylinder with an Angle of Incidence. Physics of Fluids, 22, 043603.
  • 4. Jiang, H., Cheng, L., 2020. Flow Separation Around a Square-shaped Cylinder at Low to Moderate Reynolds Numbers. Physics of Fluids, 32, 044103.
  • 5. Zafar, F., Alam, M., 2019. Flow Structure Around and Heat Transfer from Cylinders Modified from Square to Circular. Physics of Fluids, 31, 083604.
  • 6. Davis, R.W., Moore, E.F., Purtell, L.P., 1984. A Numerical-experimental Study of Confined Flow Around Rectangular-shaped Cylinders. Physics of Fluids, 27, 46- 59.
  • 7. Camarri, S., Giannetti, F., 2007. On the Inversion of the von Karman Street in the Wake of a Confined Square-shaped Cylinder. Journal of Fluid Mechanics, 574, 169-178.
  • 8. Rahnama, M., Hadi-Moghaddam, H., 2005. Numerical Investigation of Convective Heat Transfer in Unsteady Laminar Flow over a Square-shaped Cylinder in a Channel. Heat Transfer Engineering, 26, 21-29.
  • 9. Sharma, A., Eswaran, V., 2005. Effect of Channel Confinement on the Two-dimensional Laminar Flow and Heat Transfer across a Square-shaped Cylinder. Numerical Heat Transfer, Part A, 47, 79–107.
  • 10.Reyes, M., Velazquez, A., Martin, E., Arias, J.R., 2013. Experimental Study on the Confined 3D Laminar Flow Past a Square Prism with a High Blockage Ratio. International Journal of Heat and Fluid Flow, 44, 444–457.
  • 11. Athinarayanan, A.S.K., Gurunathan, M., Parthasarathy, R.K., Taler, J., Oclon, P., Taler, D., 2019. Numerical Investigation of Heat Transfer from Flow Over Square-shaped Cylinder Placed in a Confined Channel Using Cu-water Nanofluid. Thermal Science, 23, 1367-1380.
  • 12. Dhiman, A.K., Chhabra, R.P., Eswaran, V., 2005. Flow and Heat Transfer Across a Confined Square-shaped Cylinder in the Steady Flow Regime: Effect of Peclet Number. International Journal of Heat and Mass Transfer, 48, 4598–4614.
  • 13. Dhiman, A.K., Chhabra, R.P., Eswaran, V., 2008. Steady Flow Across a Confined Square-shaped Cylinder: Effects of Power-law Index and Blockage Ratio. J. Non-Newtonian Fluid Mech., 148, 141–150
  • 14. Hegedűs, F., Hős, C., Pandula, Z., Kullmann, L., 2010. Measurement on the Cavitating Vortex Shedding Behind Rectangular-shaped Obstacles. IOP Conf. Ser.: Earth Environmental Science, 12, 012066.
  • 15. Shadaram, A., Fard, M.A., Rostamy, N., 2008. Experimental Study of Near Wake Flow Behind a Rectangular-shaped Cylinder American Journal of Applied Science, 5, 917-926.
  • 16. Farhadi, M., Rahnama, M., 2005. Three-dimensional Study of Separated Flow Over a Square-shaped Cylinder by Large Eddy Simulation. Proc. IMechE Part G: J. Aerospace Engineering, 219, 225-234
  • 17. Kim, D.H., Yang, K.S., Senda, M., 2004. Large Eddy Simulation of Turbulent Flow Past a Square-shaped Cylinder Confined in a Channel. Computers & Fluids, 33, 81–96.
  • 18. Nakagawa, S., Senda, M., Kikkawa, S., Wakasugi, H., Hiraide, A., 1998. Heat Transfer in Channel Flow Around a Rectangular-shaped Cylinder. Heat Transfer-Japanese Research, 27, 84-97.
  • 19. Nakagawa, S., Nitta, K., Senda, M., 1999. An Experimental Study on Unsteady Turbulent Near Wake of a Rectangular-shaped Cylinder in Channel Flow. Experiments in Fluids, 27, 284-294.
  • 20. Ortega-Casanova, J., 2017. On the Onset of Vortex Shedding from 2D Confined Rectangular-shaped Cylinders Having Different Aspect Ratios: Application to Promote Mixing Fluids. Chemical Engineering & Processing: Process Intensification, 120, 81-92.
  • 21.Rosales, J.L., Ortega, A., Humphrey, L.A.C., 2000. A Numerical Investigation of the Convective Heat Transfer in Unsteady Laminar Flow Past a Single and Tandem Pair of Square-shaped cylinders in a Channel. Numerical Heat Transfer, Part A, 38:443-465.
  • 22. Kurtulmuş, N., Zontul, H., Sahin, B., 2020. Heat Transfer and Flow Characteristics in a Sinusoidally Curved Converging-diverging Channel. International Journal of Thermal Sciences 148, 106163.
  • 23.Chen, T.Y., Du, R.K., 2003. Effects of Velocity Fluctuations on Heat Transfer Enhancement. Experiments in Fluids, 34, 548-555
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nazım Kurtulmuş This is me 0000-0002-8896-4079

Publication Date September 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 3

Cite

APA Kurtulmuş, N. (2021). Flow Structures Downstream of Square-shaped Cylinder in Channel. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 607-614. https://doi.org/10.21605/cukurovaumfd.1004989