Research Article
BibTex RIS Cite

Yapısal Olarak Değiştirilmiş HMX-DFT Çalışması

Year 2021, Volume: 36 Issue: 3, 755 - 767, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005554

Abstract

Oktahidro-1,3,5,7-tetranitro-1,3,5,7-tetrazosin (HMX) askeri ve endüstriyel uygulamalarda yaygın olarak kullanılan nitramin türevi bir patlayıcıdır. HMX ve benzeri özelliklere sahip patlayıcılar için duyarlılık önemli bir parametredir. Duyarlılığın düşürülmesi sayesinde ısı, sıcaklık, çarpma, sürtünme ile statik elektrik deşarjı gibi çeşitli olayların oluşmasıyla meydana gelebilecek kontrolsüz patlamalar önlenebilir. Bu amaçla, çeşitli katkı maddeleri kullanmak veya patlayıcı etkide önemli bir kayıba neden olmaksızın kimyasal modifikasyonlar yapılmaktadır. HMX(C4H8N8O8) molekülünün 4 tane nitro grubu vardır. Bu çalışmada, nitro gruplarının nitrozo ve amino gruplarına dönüştürülmesiyle duyarlılığı düşürmenin mümkün olabileceği düşünülmektedir. Balistik özellikler, yani patlama hızı (D) ve patlama basıncı (P) Kamlet-Jacobs denklemleri kullanılarak incelenmiştir. Elde edilen sonuçlara göre, belirtilen moleküler modifikasyonlarla, HMX'in duyarlılığının düşürülebileceği tespit edilmiştir.

References

  • 1. Mamand, D.M., 2019. Theoretical Calculations and Spectroscopic Analysis of Gaussian Computational Examination-NMR, FTIR, UV-Visible, MEP on 2,4,6-Nitrophenol. Journal of Physical Chemistry and Functional Materials, 2(2), 77-86.
  • 2. Priya, M.K., Revathi, B.K., Renuka, V., Sathya, S., Asirvatham, P.S., 2019. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) Analysis, HOMO-LUMO Energies, Mulliken, MEP and Thermal Properties of New Chalcone Derivative by DFT Calculation. Materials Today: Proceedings, 8, 37-46.
  • 3. Al-Ahmary, K.M., Habeeb, M.M., Aljahdali, S.H., 2019. Synthesis, Spectroscopic Studies and DFT/TD-DFT/PCM Calculations of Molecular Structure, Spectroscopic Characterization and NBO of Charge Transfer Complex Between 5-amino-1,3-dimethylpyrazole (5-ADMP) with Chloranilic Acid (CLA) in Different Solvents. Journal of Molecular Liquids, 277, 453-470.
  • 4. Wu, X., Liu, Z., Ji, G., Zhu, W., 2019. Pressure-induced Structure, Vibrational Properties, and Initial Decomposition Mechanisms of Delta-HMX Crystal: A Periodic DFT Study. Journal of Molecular Graphics and Modelling, 90, 144-152.
  • 5. Bari, R., Koh, Y.P., McKenna, G.B., Simon, S.L., 2020. Decomposition of HMX in Solid and Liquid States Under Nanoconfinement. Thermochimica Acta, 686.
  • 6. Bondarchuk, S.V., 2020. Modeling of Explosives: 1,4,2,3,5,6-dioxatetrazinane as a New Green Energetic Material with Enhanced Performance. Journal of Physics and Chemistry of Solids, 142.
  • 7. Zeng, Y., Song, Y., Yu, G., Zheng, X., 2016. A Comparative Study of 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine (HMX) Under High Pressures Using Raman Spectroscopy and DFT Calculations. Journal of Molecular Structure, 1119, 240-249.
  • 8. Jeong, K., Sung, I., Uk Joo, H., Kwon, T., Yuk, J.M., Kwon, Y., Kim, H., 2020. Molecular Design of Nitro-oxide-substituted Cycloalkane Derivatives for High-energy-density Materials. Journal of Molecular Structure, 1212.
  • 9. Wang, P., Wang, J., Wang, J., 2020. Crystal Structure and Thermal Decomposition Kinetics of 1,3,5-trinitro-4,6-diazidobenzene. Journal of Thermal Analysis and Calorimetry, 143(6), 3983-3995.
  • 10. Türker, L., 2019. Epoxides of DADNE Isomers-A DFT Study. Earthline Journal of Chemical Sciences, 121-139.
  • 11. Shi, Y.B., Bai, L.F., Li, J.H., Sun, G.A., Gong, J., Ju, X., 2019. Theoretical Calculation into the Effect of Molar Ratio on the Structures, Stability, Mechanical Properties and Detonation Performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/ 1,3,5-trinitro-1,3,5- triazacyco-hexane Cocrystal. Journal of Molecular Modeling, 25(9), 299.
  • 12. Shi, Y., Bai, L., Gong, J., Ju, X., 2019. Theoretical Calculation into the Structures, Stability, Sensitivity, and Mechanical Properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 hexaazai-sowurtzitane (CL-20)/1-amino-3-methyl-1,2,3-triazoliumnitrate (1-AMTN) coCRYSTAL and its Mixture. Structural Chemistry, 31(2), 647-655.
  • 13. Lin, H., Zhu, Q., Huang, C., Yang, D.D., Lou, N., Zhu, S.G., Li, H.Z., 2019. Dinitromethyl, Fluorodinitromethyl Derivatives of RDX and HMX as High Energy Density Materials: a Computational Study. Structural Chemistry, 30(6), 2401-2408.
  • 14. Lin, H., Yang, D.D., Lou, N., Zhu, S.G., Li, H.Z., 2019. Theoretical Design and Screening Potential High Energy Density Materials: Combination of 1,2,4-oxadiazole and 1,3,4-oxadiazole Rings. Combustion, Explosion, and Shock Waves, 55(5), 547-554.
  • 15. Türker, L., Variş, S., 2017. Structurally Modified RDX-A DFT Study. Defence Technology, 13(6), 385-391.
  • 16. Spartan, 2005. Molecular Modeling in Physical Chemistry, 52-57.
  • 17. Frisch, M.J., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M., Cheeseman, J., Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., 2004. Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford, CT.
  • 18. Türker, L., 2019. Interaction of TATB with Cu and Cu+1. A DFT Study, Defence Technology, 15(1), 27-37.
  • 19. Young, D.C., 2001. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. John Wiley & Sons, Inc,
  • 20. Türker, L., Variş, S., 2013. Prediction of Explosive Performance Properties ofz-DBBD and its Isomers by Quantum Chemical Computations. Journal of Energetic Materials, 31(3), 203-216.
  • 21. Wu, Q., Yan, G., Li, M., Hu, Q., Zhang, Z., Zhu, W., 2020. Density Functional Theory Studies of Effects of Boron Replacement on the Structure and Property of RDX and HMX. Journal of the Chinese Chemical Society, 67(11), 1977-1985.
  • 22. Akhavan, J., 1998. The Chemistry of Explosives United Kingdom: RSC Paperback 37-38, 73-74.
  • 23. Yang, J., Wang, F., Zhang, J., Wang, G., Gong, X., 2013. A Theoretical Study on 1,5-diazido-3-nitrazapentane (DANP) and 1,7-diazido-2,4,6-trinitrazaheptane (DATNH): Molecular and Crystal Structures, Thermodynamic and Detonation Properties, and Pyrolysis Mechanism. Journal of Molecular Modeling, 19(12), 5367-76.
  • 24. Pu, K., Wang, L., Liu, J., Zhong, K., 2020. Theoretical Design of Bis-azole Derivatives for Energetic Compounds. RSC Advances, 10(22), 13185-13195.
  • 25. Wang, G., Xu, Y., Zhang, W., Gong, X., 2019. A Theoretical Study of Polyethylene Glycol Polynitrates as Potential Highly Energetic Plasticizers for Propellants. Central European Journal of Energetic Materials, 16(2), 194-215. 26. Qiu, L., Xiao, H., Gong, X., Ju, X., Zhu, W., 2006. Theoretical Studies on the Structures, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms of Spiro Nitramines. The Journal of Physical Chemistry A, 110, 3797-3807.
  • 27. Qiu, L., Xiao, H., Gong, X., Ju, X., Zhu, W., 2006. Theoretical Studies on the Structures ,Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms of Spiro Nitramines. Journal of Computational Chemistry A, 110(10), 3797-3807.
  • 28. Kamlet, M.J., Jacobs, S.J., 1968. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C H N O Explosives. The Journal of Chemical Physics, 48, 23-25.
  • 29. Kamlet, M.J., Short, J.M., 1980. The Chemistry of Detonations. VI. A “Rule forGamma” as a Criterion for Choice Among Conflicting Detonation Pressure Measurements. Combustion and Flame, 38, 221-230.
  • 30.Jeong, K., 2018. New Theoretically Predicted RDX- and β-HMX-based High-energy-density Molecules. International Journal of Quantum Chemistry, 118(6), 1-7.
  • 31.Choi, C.S., Boutin, H.P., 1970. A Study of the Crystal Structure of [β]-cyclotetramethylene Tetranitramine by Neutron Diffraction. Acta Crystallographica, B26, 1235-1240.
  • 32. Lewis, J.P., 2003. Energetics of Intermolecular HONO Formation in Condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Chemical Physics Letters, 371(5-6), 588-593.
  • 33. Damian, G.A., Darya, A.P., Timothy, M.K., 2006. Solid-State Modeling of the Terahertz Spectrum of the High Explosive HMX. Journal of Physical Chemistry A 110, 1951-1959.
  • 34. Palmer, S.J.P., Fieldf, J.E.,F., 1982. The Deformation and Fracture of (β-HMX). Proceedings of the Royal Society of London, A 383, 399-407.
  • 35. Lu,L.Y., Wei, D.Q., Chen, X.R., Ji, G.F., Wang, X.J., Chang, J., Zhang, Q.M., Gong, Z.Z., 2009. The Pressure-induced Phase Transition of the Solid β–HMX. Molecular Physics, 107(22), 2373-2385.
  • 36. Shaowen, Z., Thanh, N.T., 2000. Thermal Rate Constants of the NO2 Fission Reaction of Gas Phase β-HMX: A Direct ab Initio Dynamics Study. Journal of Physical Chemistry A 104, 7304-7307.
  • 37. Lewis, J.P., Glaesemann, K.R., VanOpdorp, K., Voth, G.A., 2000. Ab Initio Calculations of Reactive Pathways for r-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX). J. Phys. Chem. A, 104, 11384-11389.
  • 38. Gümüş, H., 2019. Nikotinamid İçeren Çinko (II) Kompleksinin Moleküler Özellikleri ve Titreşim Spektrumu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 254-261.
  • 39. Göcen T., Güven M.H., 2020. PalmitoleikAsidin Moleküler Yapısı, Titreşim Spektrumları ve Elektronik Özelliklerinin Teorik Olarak İncelenmesi. Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Dergisi, 7(2), 553-573.
  • 40.Bozkuş, S.İ., Şen, N., 2019. 2,4,6-Trinitrofenol ve Trinitrotoluen ile 1-Bromopiren Arasında Oluşan Yeni Enerjik Ko-kristalin Karakterizasyonu ve Enerjik Performans Özellikleri. Süleyman Demirel Üniversitesi, Fen Edebiyat Fakültesi, Fen Dergisi, 14, 136-149.
  • 41. Talawar, M.B., Sivabalan, R., Mukundan, T., Muthurajan, H., Sikder, A.K., Gandhe B.R., Rao, S., 2009. Environmentally Compatible Next Generation Green Energetic Materials (GEMs). Journal of Hazardous Materials, 161(2-3), 589-607.
  • 42. Pan, Y., Zhu, W., Xiao, H., 2013. DFT Studies on Trinitromethyl- or Dinitromethyl-modified Derivatives of RDX and β-HMX, Computational and Theoretical Chemistry, 1019, 116-124.
  • 43.Jeon, W.C., Lee, H.Y., Kim, J.C., Kang, S.J., jung, S.H., Cho, S.G., Kwak, S.K., 2020. Reaction Kinetics of Mixture of Nitromethane and Detonator Confined in Carbon Nanotube. Journal of Industrial and Engineering Chemistry, 83, 64-71.
  • 44. Shang, Y., Huang, R.K., Chen, S.L., He, C.T., Yu, Z.H., Ye, Z.M., Zhang, W.X., Chen, X.M., 2020. Metal-Free Molecular Perovskite High-Energetic Materials. Crystal Growth & Design, 20(3), 1891-1897.
  • 45. Zhang, Y., Li, Y., Hu, J., Ge, Z., Sun, C., Pang, S., 2019. Energetic C-trinitromethyl-substituted Pyrazoles: Synthesis and Characterization. Dalton Transactions, 48(4), 1524-1529.
  • 46. Liu, J., Liu, L., Liu, X., 2019. Development of High-energy-density Materials. Science China Technological Sciences, 63(2), 195-213.
  • 47. Wang, G., Xiao, H., Ju, X., Gong, X., 2006. Calculation of Detonation Velocity, Pressure, and Electric Sensitivity of Nitro Arenes Based on Quantum Chemistry. Propellants, Explosives, Pyrotechnics, 31(5), 361-368.
  • 48. Xu, W., Guo, F., Liang, X., Yan, T., Xu, Y., Deng, J., Li, Y., Wang, J., 2021. Dynamic Response Properties of Polymer Bonded Explosives Under Different Excitation by Deceleration. Materials & Design, 206, 109810-109825.
  • 49. Perry, W. L., Duque, A. L., Mang, J. T., Culp, D.B., 2021. Computing Continuum-level Explosive Shock and Detonation Response Over a Wide Pressure Range from Microstructural Details. Combustion and Flame, 231, 111470-111483.
  • 50. Liu, D., Zhao, P., Chan, S.H., Hng, H.H., Chen, L., 2021. Effects of Nano-sized Aluminum on Detonation Characteristics andMetal Acceleration for RDX-based Aluminized Explosive. Defence Technology, 17(2), 327-337.
  • 51.Bondarchuk, S.V., 2021. Diazoamination: A Simple way to Enhance Detonation Performance of Aminoaromatic and Aminoheterocyclic Energetic Materials. Fire Phys Chem, 1(2), 97-102.
  • 52.Choi, S., Kim, B., Han, S., Yoh, J.J., 2020. Multiscale Modeling of Transients in the Shock-induced Detonation of Heterogeneous Energetic Solid Fuels. Combustion and Flame, 221, 401-415.

Structurally Modified HMX-A DFT Study

Year 2021, Volume: 36 Issue: 3, 755 - 767, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005554

Abstract

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazosine (HMX) is a nitramine explosive derivative that widely used in military and industrial applications. The sensitivity is a significant parameter for HMX and explosives which have similar properties. By reducing the sensitivity, uncontrolled explosions that may occur due to various events such as heat, temperature, impact, friction and static electricity discharge can be prevented. For this purpose, chemical modifications are made without using various additives or causing a significant loss in explosive effect. HMX (C4H8N8O8) molecule has 4 nitro groups. In this study, it is thought that it may be possible to reduce the sensitivity by converting these nitro groups into nitroso and amino groups. Ballistic properties, ie detonation velocity (D) and detonation pressure (P), are investigated using Kamlet-Jacobs equations. According to the results, it was determined that the
sensitivity of HMX can be decreased with the specified molecular modifications.

References

  • 1. Mamand, D.M., 2019. Theoretical Calculations and Spectroscopic Analysis of Gaussian Computational Examination-NMR, FTIR, UV-Visible, MEP on 2,4,6-Nitrophenol. Journal of Physical Chemistry and Functional Materials, 2(2), 77-86.
  • 2. Priya, M.K., Revathi, B.K., Renuka, V., Sathya, S., Asirvatham, P.S., 2019. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) Analysis, HOMO-LUMO Energies, Mulliken, MEP and Thermal Properties of New Chalcone Derivative by DFT Calculation. Materials Today: Proceedings, 8, 37-46.
  • 3. Al-Ahmary, K.M., Habeeb, M.M., Aljahdali, S.H., 2019. Synthesis, Spectroscopic Studies and DFT/TD-DFT/PCM Calculations of Molecular Structure, Spectroscopic Characterization and NBO of Charge Transfer Complex Between 5-amino-1,3-dimethylpyrazole (5-ADMP) with Chloranilic Acid (CLA) in Different Solvents. Journal of Molecular Liquids, 277, 453-470.
  • 4. Wu, X., Liu, Z., Ji, G., Zhu, W., 2019. Pressure-induced Structure, Vibrational Properties, and Initial Decomposition Mechanisms of Delta-HMX Crystal: A Periodic DFT Study. Journal of Molecular Graphics and Modelling, 90, 144-152.
  • 5. Bari, R., Koh, Y.P., McKenna, G.B., Simon, S.L., 2020. Decomposition of HMX in Solid and Liquid States Under Nanoconfinement. Thermochimica Acta, 686.
  • 6. Bondarchuk, S.V., 2020. Modeling of Explosives: 1,4,2,3,5,6-dioxatetrazinane as a New Green Energetic Material with Enhanced Performance. Journal of Physics and Chemistry of Solids, 142.
  • 7. Zeng, Y., Song, Y., Yu, G., Zheng, X., 2016. A Comparative Study of 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine (HMX) Under High Pressures Using Raman Spectroscopy and DFT Calculations. Journal of Molecular Structure, 1119, 240-249.
  • 8. Jeong, K., Sung, I., Uk Joo, H., Kwon, T., Yuk, J.M., Kwon, Y., Kim, H., 2020. Molecular Design of Nitro-oxide-substituted Cycloalkane Derivatives for High-energy-density Materials. Journal of Molecular Structure, 1212.
  • 9. Wang, P., Wang, J., Wang, J., 2020. Crystal Structure and Thermal Decomposition Kinetics of 1,3,5-trinitro-4,6-diazidobenzene. Journal of Thermal Analysis and Calorimetry, 143(6), 3983-3995.
  • 10. Türker, L., 2019. Epoxides of DADNE Isomers-A DFT Study. Earthline Journal of Chemical Sciences, 121-139.
  • 11. Shi, Y.B., Bai, L.F., Li, J.H., Sun, G.A., Gong, J., Ju, X., 2019. Theoretical Calculation into the Effect of Molar Ratio on the Structures, Stability, Mechanical Properties and Detonation Performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/ 1,3,5-trinitro-1,3,5- triazacyco-hexane Cocrystal. Journal of Molecular Modeling, 25(9), 299.
  • 12. Shi, Y., Bai, L., Gong, J., Ju, X., 2019. Theoretical Calculation into the Structures, Stability, Sensitivity, and Mechanical Properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 hexaazai-sowurtzitane (CL-20)/1-amino-3-methyl-1,2,3-triazoliumnitrate (1-AMTN) coCRYSTAL and its Mixture. Structural Chemistry, 31(2), 647-655.
  • 13. Lin, H., Zhu, Q., Huang, C., Yang, D.D., Lou, N., Zhu, S.G., Li, H.Z., 2019. Dinitromethyl, Fluorodinitromethyl Derivatives of RDX and HMX as High Energy Density Materials: a Computational Study. Structural Chemistry, 30(6), 2401-2408.
  • 14. Lin, H., Yang, D.D., Lou, N., Zhu, S.G., Li, H.Z., 2019. Theoretical Design and Screening Potential High Energy Density Materials: Combination of 1,2,4-oxadiazole and 1,3,4-oxadiazole Rings. Combustion, Explosion, and Shock Waves, 55(5), 547-554.
  • 15. Türker, L., Variş, S., 2017. Structurally Modified RDX-A DFT Study. Defence Technology, 13(6), 385-391.
  • 16. Spartan, 2005. Molecular Modeling in Physical Chemistry, 52-57.
  • 17. Frisch, M.J., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M., Cheeseman, J., Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., 2004. Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford, CT.
  • 18. Türker, L., 2019. Interaction of TATB with Cu and Cu+1. A DFT Study, Defence Technology, 15(1), 27-37.
  • 19. Young, D.C., 2001. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. John Wiley & Sons, Inc,
  • 20. Türker, L., Variş, S., 2013. Prediction of Explosive Performance Properties ofz-DBBD and its Isomers by Quantum Chemical Computations. Journal of Energetic Materials, 31(3), 203-216.
  • 21. Wu, Q., Yan, G., Li, M., Hu, Q., Zhang, Z., Zhu, W., 2020. Density Functional Theory Studies of Effects of Boron Replacement on the Structure and Property of RDX and HMX. Journal of the Chinese Chemical Society, 67(11), 1977-1985.
  • 22. Akhavan, J., 1998. The Chemistry of Explosives United Kingdom: RSC Paperback 37-38, 73-74.
  • 23. Yang, J., Wang, F., Zhang, J., Wang, G., Gong, X., 2013. A Theoretical Study on 1,5-diazido-3-nitrazapentane (DANP) and 1,7-diazido-2,4,6-trinitrazaheptane (DATNH): Molecular and Crystal Structures, Thermodynamic and Detonation Properties, and Pyrolysis Mechanism. Journal of Molecular Modeling, 19(12), 5367-76.
  • 24. Pu, K., Wang, L., Liu, J., Zhong, K., 2020. Theoretical Design of Bis-azole Derivatives for Energetic Compounds. RSC Advances, 10(22), 13185-13195.
  • 25. Wang, G., Xu, Y., Zhang, W., Gong, X., 2019. A Theoretical Study of Polyethylene Glycol Polynitrates as Potential Highly Energetic Plasticizers for Propellants. Central European Journal of Energetic Materials, 16(2), 194-215. 26. Qiu, L., Xiao, H., Gong, X., Ju, X., Zhu, W., 2006. Theoretical Studies on the Structures, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms of Spiro Nitramines. The Journal of Physical Chemistry A, 110, 3797-3807.
  • 27. Qiu, L., Xiao, H., Gong, X., Ju, X., Zhu, W., 2006. Theoretical Studies on the Structures ,Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms of Spiro Nitramines. Journal of Computational Chemistry A, 110(10), 3797-3807.
  • 28. Kamlet, M.J., Jacobs, S.J., 1968. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C H N O Explosives. The Journal of Chemical Physics, 48, 23-25.
  • 29. Kamlet, M.J., Short, J.M., 1980. The Chemistry of Detonations. VI. A “Rule forGamma” as a Criterion for Choice Among Conflicting Detonation Pressure Measurements. Combustion and Flame, 38, 221-230.
  • 30.Jeong, K., 2018. New Theoretically Predicted RDX- and β-HMX-based High-energy-density Molecules. International Journal of Quantum Chemistry, 118(6), 1-7.
  • 31.Choi, C.S., Boutin, H.P., 1970. A Study of the Crystal Structure of [β]-cyclotetramethylene Tetranitramine by Neutron Diffraction. Acta Crystallographica, B26, 1235-1240.
  • 32. Lewis, J.P., 2003. Energetics of Intermolecular HONO Formation in Condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Chemical Physics Letters, 371(5-6), 588-593.
  • 33. Damian, G.A., Darya, A.P., Timothy, M.K., 2006. Solid-State Modeling of the Terahertz Spectrum of the High Explosive HMX. Journal of Physical Chemistry A 110, 1951-1959.
  • 34. Palmer, S.J.P., Fieldf, J.E.,F., 1982. The Deformation and Fracture of (β-HMX). Proceedings of the Royal Society of London, A 383, 399-407.
  • 35. Lu,L.Y., Wei, D.Q., Chen, X.R., Ji, G.F., Wang, X.J., Chang, J., Zhang, Q.M., Gong, Z.Z., 2009. The Pressure-induced Phase Transition of the Solid β–HMX. Molecular Physics, 107(22), 2373-2385.
  • 36. Shaowen, Z., Thanh, N.T., 2000. Thermal Rate Constants of the NO2 Fission Reaction of Gas Phase β-HMX: A Direct ab Initio Dynamics Study. Journal of Physical Chemistry A 104, 7304-7307.
  • 37. Lewis, J.P., Glaesemann, K.R., VanOpdorp, K., Voth, G.A., 2000. Ab Initio Calculations of Reactive Pathways for r-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX). J. Phys. Chem. A, 104, 11384-11389.
  • 38. Gümüş, H., 2019. Nikotinamid İçeren Çinko (II) Kompleksinin Moleküler Özellikleri ve Titreşim Spektrumu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 254-261.
  • 39. Göcen T., Güven M.H., 2020. PalmitoleikAsidin Moleküler Yapısı, Titreşim Spektrumları ve Elektronik Özelliklerinin Teorik Olarak İncelenmesi. Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Dergisi, 7(2), 553-573.
  • 40.Bozkuş, S.İ., Şen, N., 2019. 2,4,6-Trinitrofenol ve Trinitrotoluen ile 1-Bromopiren Arasında Oluşan Yeni Enerjik Ko-kristalin Karakterizasyonu ve Enerjik Performans Özellikleri. Süleyman Demirel Üniversitesi, Fen Edebiyat Fakültesi, Fen Dergisi, 14, 136-149.
  • 41. Talawar, M.B., Sivabalan, R., Mukundan, T., Muthurajan, H., Sikder, A.K., Gandhe B.R., Rao, S., 2009. Environmentally Compatible Next Generation Green Energetic Materials (GEMs). Journal of Hazardous Materials, 161(2-3), 589-607.
  • 42. Pan, Y., Zhu, W., Xiao, H., 2013. DFT Studies on Trinitromethyl- or Dinitromethyl-modified Derivatives of RDX and β-HMX, Computational and Theoretical Chemistry, 1019, 116-124.
  • 43.Jeon, W.C., Lee, H.Y., Kim, J.C., Kang, S.J., jung, S.H., Cho, S.G., Kwak, S.K., 2020. Reaction Kinetics of Mixture of Nitromethane and Detonator Confined in Carbon Nanotube. Journal of Industrial and Engineering Chemistry, 83, 64-71.
  • 44. Shang, Y., Huang, R.K., Chen, S.L., He, C.T., Yu, Z.H., Ye, Z.M., Zhang, W.X., Chen, X.M., 2020. Metal-Free Molecular Perovskite High-Energetic Materials. Crystal Growth & Design, 20(3), 1891-1897.
  • 45. Zhang, Y., Li, Y., Hu, J., Ge, Z., Sun, C., Pang, S., 2019. Energetic C-trinitromethyl-substituted Pyrazoles: Synthesis and Characterization. Dalton Transactions, 48(4), 1524-1529.
  • 46. Liu, J., Liu, L., Liu, X., 2019. Development of High-energy-density Materials. Science China Technological Sciences, 63(2), 195-213.
  • 47. Wang, G., Xiao, H., Ju, X., Gong, X., 2006. Calculation of Detonation Velocity, Pressure, and Electric Sensitivity of Nitro Arenes Based on Quantum Chemistry. Propellants, Explosives, Pyrotechnics, 31(5), 361-368.
  • 48. Xu, W., Guo, F., Liang, X., Yan, T., Xu, Y., Deng, J., Li, Y., Wang, J., 2021. Dynamic Response Properties of Polymer Bonded Explosives Under Different Excitation by Deceleration. Materials & Design, 206, 109810-109825.
  • 49. Perry, W. L., Duque, A. L., Mang, J. T., Culp, D.B., 2021. Computing Continuum-level Explosive Shock and Detonation Response Over a Wide Pressure Range from Microstructural Details. Combustion and Flame, 231, 111470-111483.
  • 50. Liu, D., Zhao, P., Chan, S.H., Hng, H.H., Chen, L., 2021. Effects of Nano-sized Aluminum on Detonation Characteristics andMetal Acceleration for RDX-based Aluminized Explosive. Defence Technology, 17(2), 327-337.
  • 51.Bondarchuk, S.V., 2021. Diazoamination: A Simple way to Enhance Detonation Performance of Aminoaromatic and Aminoheterocyclic Energetic Materials. Fire Phys Chem, 1(2), 97-102.
  • 52.Choi, S., Kim, B., Han, S., Yoh, J.J., 2020. Multiscale Modeling of Transients in the Shock-induced Detonation of Heterogeneous Energetic Solid Fuels. Combustion and Flame, 221, 401-415.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Erman Mert 0000-0002-0114-8707

Publication Date September 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 3

Cite

APA Mert, M. E. (2021). Yapısal Olarak Değiştirilmiş HMX-DFT Çalışması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 755-767. https://doi.org/10.21605/cukurovaumfd.1005554