BibTex RIS Cite

Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells

Year 2016, Volume: 37 Issue: 3, 212 - 222, 16.09.2016
https://doi.org/10.17776/csj.34085

Abstract

Abstract. Four different strains of Bacillus cereus producing indole-3-acetic acid (IAA) were isolated from various rhizospheric soils and characterized biochemically. The isolates were screened for (IAA) production and BC-On strain was found to be the best IAA producer with 46.25 mg/l. Maximum IAA production was obtained in the stationary growth phase at 72h. Significant correlation was also observed between IAA production and growth of the B. cereus strains. Among the isolates, BC-On strain was further used for immobilization studies. Maximum IAA production was obtained at initial pH of 8.0 and temperature of 35 °C after 18 h of fermentation. The immobilized cells could be effectively reused thirteen times and the IAA concentration of 300 mg/l was determined during this period. Results showed that immobilized cells can be used in the continuous process for the production of IAA. The productivity obtained by immobilization was higher than the one obtained by submerged cultivation and immobilization reduced the fermentation time.

Keywords: Indole-3-acetic acid, Rhizobacteria, Bacillus cereus, Immobilization

 

Özet. İndol-3-asetik asit (İAA) üreten dört farklı Bacillus cereus straini çeşitli rizosfer topraklarından izole edildi ve biyokimyasal olarak karakterize edilmiştir. İzolatlar İAA üretimi için taranmış ve BC-On straini 46.25  mg/l ile en iyi İAA üreticisi olarak bulunmuştur. En fazla IAA üretimi 72. saatte durağan büyüme fazında elde edilmiştir. B. cereus strainlerinin IAA üretimi ve büyüme arasında önemli bir ilişki gözlenmiştir. İzolatlar arasında, BC-On straini immobilizasyon çalışmalarında kullanılmıştır. En fazla IAA üretimi 18 saatlik fermentasyon sonrasında başlangıç pH’sı 8.0 ve 35 °C elde edilmiştir. İmmobilize edilmiş hücreler etkili olarak on üç kez kullanılabilmiş ve bu süre boyunca 300 mg/l İAA konsantrasyonu tespit edilmiştir. Sonuçlar immobilize hücrelerin IAA üretimi için sürekli bir işlemde kullanılabilir olduğunu göstermiştir. İmmobilizasyon ile elde edilen verimlilik, derin fermentasyon ile elde edilenden daha yüksek olduğu bulunmuş ve immobilizasyon fermentasyon süresini kısaltmıştır.

Anahtar Kelimeler: İndol-3-asetik asit, Rizobakteriler, Bacillus cereus, İmmobilizasyon

References

  • Patten, C.L., Glick, B.R., 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microb. 68(8), 3795-3801.
  • Duca, D., Lorv, J., Patten, C.L., Rose, D., Glick, B.R., 2014. Indole-3-acetic acid in plant–microbe interactions. A Van Leeuw. J. Mıcrob. 106(1), 85-125.
  • Kumar, A., Maurya, B.R., Raghuwanshi, R., 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal. Agric. Biotechnol. 3(4), 121-128.
  • Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., Srivastava, R.C., 2011. Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. World J. Microbiol. Biotechnol. 27(7), 1625-1632.
  • Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., Park, S.W., 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth. Regul. 32(2), 245-258.
  • Kurbanoglu, E.B., Zilbeyaz, K., Ozdal, M., Taskin, M., Kurbanoglu, N.I., 2010. Asymmetric reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells. Bioresour. Technol. 101, 3825-3829.
  • Kurbanoglu, E.B., Zilbeyaz, K., Kurbanoglu, N.I., Ozdal, M., Taskin, M., Algur, O.F., 2010. Continuous production of (S)-1-phenylethanol by immobilized cells of Rhodotorula glutinis with a specially designed process. Tetrahedron: Asymmetry, 21, 461-464. 8. Okay, S., Ozdal, M., Kurbanoğlu, E.B., 2013. Characterization, antifungal activity and cell immobilization of a chitinase from Serratia marcescens MO-1. Turkish J. Biol. 37, 639-644.
  • Harley, J.P, Prescott, L.M., 2002. Laboratory Exercises in Microbiology. McGraw-Hill Pub. 5th edition.
  • Kurbanoglu, E.B., Ozdal, M., Ozdal, O.G., Algur, O.F., 2015. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Braz. J. Microbiol. 46, 631-637.
  • Kaneda, T., 1968. Fatty acids in the genus Bacillus. J. Bacteriol. 95, 2210-2216.
  • Kaneda, T., 1977. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol. Rev. 41, 391-418.
  • Haack, S.K., Garchow, H., Odelson, D.A., 1994. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60, 2483-2493.
  • Ozdal, M, Ozdal, O.G., Algur, O.F., 2016. Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches. Polish J. Microbiol. 65(1), 63-68.
  • Väisänen, O.M., Mwaisumo, N.J., Salkinoja‐Salonen, M.S., 1991. Differentiation of dairy strains of the Bacillus cereus group by phage typing, minimum growth temperature, and fatty acid analysis. J. Appl. Bacteriol. 70(4), 315-324.
  • Schleifer, K.H., 2009. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In: Bergey’s Manual of Systematic Bacteriology, vol. 3 (The Firmicutes), 2nd Ed. Springer Verlag, New York.
  • Datta, C., Basu, P.S., 2000. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155(2), 123-127.
  • Shokri, D., Emtiazi, G., 2010. Indole-3-acetic acid (IAA) production in symbiotic and non- symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol. 61(3), 217-225.
  • Ünyayar, S., Ünal, E., Ünyayar, A., 2001. Relationship between production of 3-indoleacetic acid and peroxidase-laccase activities depending on the culture periods in Funalia trogii (Trametes trogii). Folia Microbiol. 46(2), 123-126.
  • Prashanth, S., Mathivanan, N., 2010. Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Arch. Phytopathology Plant Protect. 43(2), 191- 208.
  • Blinkov, E.A., Tsavkelova, E.A., Selitskaya, O.V., 2014. Auxin production by the Klebsiella planticola strain TSKhA-91 and its effect on development of cucumber (Cucumis sativus L.) seeds. Microbiol. 83(5), 531-538.
  • Singh, A., Chisti, Y., Banerjee, U.C., 2012. Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis. Process Biochem. 47(12), 2398- 2404.
  • Nutaratat, P., Amsri, W., Srisuk, N., Arunrattiyakorn, P., Limtong, S., 2015. Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J. Gen. Appl. Microbiol. 61(1), 1-9.
  • Raffel, S.J., Stabb, E.V., Milner, J.L., Handelsman, J.O., 1996. Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiol. 142, 3425-3436.
  • Whittaker, P., Fry, F.S., Curtis, S.K., Al-Khaldi, S.F., Mossoba, M.M., Yurawecz, M.P., Dunkel, V.C., 2005. Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. J. Agric. Food Chem. 53(9), 3735-3742.
  • Ghosh, S., Basu, P. S., 2006. Production and metabolism of indole acetic acid in roots and root
  • nodules of Phaseolus mungo. Microbiol. Res. 161(4), 362-366 .

Immobilize Bacillus cereus Hücreleri Tarafından İndol-3-Asetik Asitin Biyosentezi

Year 2016, Volume: 37 Issue: 3, 212 - 222, 16.09.2016
https://doi.org/10.17776/csj.34085

Abstract

İndol-3-asetik asit (İAA) üreten dört farklı Bacillus cereus straini çeşitli rizosfer topraklarından izole edildi ve biyokimyasal olarak karakterize edilmiştir. İzolatlar İAA üretimi için taranmış ve BC-On straini 46.25 mg/l ile en iyi İAA üreticisi olarak bulunmuştur. En fazla IAA üretimi 72. saatte durağan büyüme fazında elde edilmiştir. B. cereus strainlerinin IAA üretimi ve büyüme arasında önemli bir ilişki gözlenmiştir. İzolatlar arasında, BC-On straini immobilizasyon çalışmalarında kullanılmıştır. En fazla IAA üretimi 18 saatlik fermentasyon sonrasında başlangıç pH’sı 8.0 ve 35 °C elde edilmiştir. İmmobilize edilmiş hücreler etkili olarak on üç kez kullanılabilmiş ve bu süre boyunca 300 mg/l İAA konsantrasyonu tespit edilmiştir. Sonuçlar immobilize hücrelerin IAA üretimi için sürekli bir işlemde kullanılabilir olduğunu göstermiştir. İmmobilizasyon ile elde edilen verimlilik, derin fermentasyon ile elde edilenden daha yüksek olduğu bulunmuş ve immobilizasyon fermentasyon süresini kısaltmıştır

References

  • Patten, C.L., Glick, B.R., 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microb. 68(8), 3795-3801.
  • Duca, D., Lorv, J., Patten, C.L., Rose, D., Glick, B.R., 2014. Indole-3-acetic acid in plant–microbe interactions. A Van Leeuw. J. Mıcrob. 106(1), 85-125.
  • Kumar, A., Maurya, B.R., Raghuwanshi, R., 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal. Agric. Biotechnol. 3(4), 121-128.
  • Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., Srivastava, R.C., 2011. Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. World J. Microbiol. Biotechnol. 27(7), 1625-1632.
  • Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., Park, S.W., 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth. Regul. 32(2), 245-258.
  • Kurbanoglu, E.B., Zilbeyaz, K., Ozdal, M., Taskin, M., Kurbanoglu, N.I., 2010. Asymmetric reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells. Bioresour. Technol. 101, 3825-3829.
  • Kurbanoglu, E.B., Zilbeyaz, K., Kurbanoglu, N.I., Ozdal, M., Taskin, M., Algur, O.F., 2010. Continuous production of (S)-1-phenylethanol by immobilized cells of Rhodotorula glutinis with a specially designed process. Tetrahedron: Asymmetry, 21, 461-464. 8. Okay, S., Ozdal, M., Kurbanoğlu, E.B., 2013. Characterization, antifungal activity and cell immobilization of a chitinase from Serratia marcescens MO-1. Turkish J. Biol. 37, 639-644.
  • Harley, J.P, Prescott, L.M., 2002. Laboratory Exercises in Microbiology. McGraw-Hill Pub. 5th edition.
  • Kurbanoglu, E.B., Ozdal, M., Ozdal, O.G., Algur, O.F., 2015. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Braz. J. Microbiol. 46, 631-637.
  • Kaneda, T., 1968. Fatty acids in the genus Bacillus. J. Bacteriol. 95, 2210-2216.
  • Kaneda, T., 1977. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol. Rev. 41, 391-418.
  • Haack, S.K., Garchow, H., Odelson, D.A., 1994. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60, 2483-2493.
  • Ozdal, M, Ozdal, O.G., Algur, O.F., 2016. Isolation and Characterization of α-Endosulfan Degrading Bacteria from the Microflora of Cockroaches. Polish J. Microbiol. 65(1), 63-68.
  • Väisänen, O.M., Mwaisumo, N.J., Salkinoja‐Salonen, M.S., 1991. Differentiation of dairy strains of the Bacillus cereus group by phage typing, minimum growth temperature, and fatty acid analysis. J. Appl. Bacteriol. 70(4), 315-324.
  • Schleifer, K.H., 2009. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In: Bergey’s Manual of Systematic Bacteriology, vol. 3 (The Firmicutes), 2nd Ed. Springer Verlag, New York.
  • Datta, C., Basu, P.S., 2000. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155(2), 123-127.
  • Shokri, D., Emtiazi, G., 2010. Indole-3-acetic acid (IAA) production in symbiotic and non- symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol. 61(3), 217-225.
  • Ünyayar, S., Ünal, E., Ünyayar, A., 2001. Relationship between production of 3-indoleacetic acid and peroxidase-laccase activities depending on the culture periods in Funalia trogii (Trametes trogii). Folia Microbiol. 46(2), 123-126.
  • Prashanth, S., Mathivanan, N., 2010. Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Arch. Phytopathology Plant Protect. 43(2), 191- 208.
  • Blinkov, E.A., Tsavkelova, E.A., Selitskaya, O.V., 2014. Auxin production by the Klebsiella planticola strain TSKhA-91 and its effect on development of cucumber (Cucumis sativus L.) seeds. Microbiol. 83(5), 531-538.
  • Singh, A., Chisti, Y., Banerjee, U.C., 2012. Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis. Process Biochem. 47(12), 2398- 2404.
  • Nutaratat, P., Amsri, W., Srisuk, N., Arunrattiyakorn, P., Limtong, S., 2015. Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J. Gen. Appl. Microbiol. 61(1), 1-9.
  • Raffel, S.J., Stabb, E.V., Milner, J.L., Handelsman, J.O., 1996. Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiol. 142, 3425-3436.
  • Whittaker, P., Fry, F.S., Curtis, S.K., Al-Khaldi, S.F., Mossoba, M.M., Yurawecz, M.P., Dunkel, V.C., 2005. Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. J. Agric. Food Chem. 53(9), 3735-3742.
  • Ghosh, S., Basu, P. S., 2006. Production and metabolism of indole acetic acid in roots and root
  • nodules of Phaseolus mungo. Microbiol. Res. 161(4), 362-366 .
There are 26 citations in total.

Details

Journal Section Natural Sciences Research Article
Authors

Murat Özdal

Özlem Gür Özdal

Alev Sezen This is me

Ömer Faruk Algur This is me

Publication Date September 16, 2016
Published in Issue Year 2016 Volume: 37 Issue: 3

Cite

APA Özdal, M., Gür Özdal, Ö., Sezen, A., Algur, Ö. F. (2016). Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 37(3), 212-222. https://doi.org/10.17776/csj.34085
AMA Özdal M, Gür Özdal Ö, Sezen A, Algur ÖF. Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. October 2016;37(3):212-222. doi:10.17776/csj.34085
Chicago Özdal, Murat, Özlem Gür Özdal, Alev Sezen, and Ömer Faruk Algur. “Biosynthesis Of Indole-3-Acetic Acid By Bacillus Cereus Immobilized Cells”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 37, no. 3 (October 2016): 212-22. https://doi.org/10.17776/csj.34085.
EndNote Özdal M, Gür Özdal Ö, Sezen A, Algur ÖF (October 1, 2016) Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 37 3 212–222.
IEEE M. Özdal, Ö. Gür Özdal, A. Sezen, and Ö. F. Algur, “Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 37, no. 3, pp. 212–222, 2016, doi: 10.17776/csj.34085.
ISNAD Özdal, Murat et al. “Biosynthesis Of Indole-3-Acetic Acid By Bacillus Cereus Immobilized Cells”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 37/3 (October 2016), 212-222. https://doi.org/10.17776/csj.34085.
JAMA Özdal M, Gür Özdal Ö, Sezen A, Algur ÖF. Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2016;37:212–222.
MLA Özdal, Murat et al. “Biosynthesis Of Indole-3-Acetic Acid By Bacillus Cereus Immobilized Cells”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 37, no. 3, 2016, pp. 212-2, doi:10.17776/csj.34085.
Vancouver Özdal M, Gür Özdal Ö, Sezen A, Algur ÖF. Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2016;37(3):212-2.