Research Article
BibTex RIS Cite

Stacked Autoencoder Method for Fabric Defect Detection

Year 2017, Volume: 38 Issue: 2, 342 - 354, 24.04.2017
https://doi.org/10.17776/cumuscij.300261

Abstract

The fabric defect detection has crucial importance in terms of sectoral
quality. As fabric defection stage, accordingly the growing market volume and
production capacity, detection via human vision has caused largely time-wasting
and success rate decreasing until 60%. Due to a fabric has unique texture,
there is necessity for it to work on separately from other images types while
extracting its features. Features are vital material of computer vision
especially classification problems. 
Hence, extracting right features is the most significant stage of error
detection. This purpose in mind on this study, deep learning which
distinguishes with multi-layer architectures and reveals high achievement on
image and speech procession recent years by self-feature extraction is applied
to fabric defect detection. Stacked autoencoder -a deep learning method- that
aimed to represent input data via compression or decompression is tried to
detect defect of fabrics and it gained acceptable success. The principal aim of
this study is to increase achievement of feature extraction by tuning up the
input value and hyper parameters autoencoder. Thanks to the fine tuning of
hyper-parameters of deep model, we have 96% success rate on our own dataset.

References

  • [1] H. Y. T. Ngan, G. K. H. Pang, and N. H. C. Yung, “Automated Fabric Defect Detection-A review,” Image Vis. Comput., vol. 29, no. 7, pp. 442–458, Jun. 2011.
  • [2] K. Kaur, N. Gupta, and K. Adhikary, “An Automatic Method to Inspect Discontinuities in Textile,” IJCSET, vol. 1, no. 8, pp. 496–498, 2011.
  • [3] Hitesh Choudhary, “Fabric Defects in Woven and Knitted Fabric,” 2012. [Online]. Available: https://www.slideshare.net/hiteshhobbit/fabric-defects-11884107. [Accessed: 20-Mar-2017].
  • [4] Ö. Kisaoğlu, “Kumaş Kalite Kontrol Sistemleri,” Pamukkale Üniversitesi Mühendislik Bilim. Derg., vol. 12, no. 2, pp. 233–241, 2006.
  • [5] A. Kumar, “Computer Vision Based Fabric Defect Detection: A Survey,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 348–363, Jan. 2008.
  • [6] K. V. N. Kumar and U. S. Ragupathy, “An Intelligent Scheme for Fault Detection in Textile Web Materials,” Int. J. Comput. Appl., vol. 46, no. 10, pp. 975–8887, 2012.
  • [7] J. L. Dorrity, “Real-Time Fabric Defect Detection And Control in Weaving Processes,” 1995.
  • [8] Y. Bengio, “Learning Deep Architectures for AI,” Found. trends® Mach. Learn., vol. 2, no. 1, pp. 1–127, 2009.
  • [9] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review and New Perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.
  • [10] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “A committee of Neural Networks for Traffic Sign Classification,” in The 2011 International Joint Conference on Neural Networks, 2011, pp. 1918–1921.
  • [11] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving Neural Networks by Preventing Co-adaptation of Feature Detectors,” Neural Evol. Comput., Jul. 2012.
  • [12] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.
  • [13] C. A. Ronao and S.-B. Cho, “Human Activity Recognition with Smartphone Sensors Using Deep Learning Neural Networks,” Expert Syst. Appl., vol. 59, pp. 235–244, Oct. 2016.
  • [14] M. Yousefi-Azar and L. Hamey, “Text Summarization Using Unsupervised Deep Learning,” Expert Syst. Appl., vol. 68, pp. 93–105, Feb. 2017.
  • [15] I. Lenz, H. Lee, and A. Saxena, “Deep Learning for Detecting Robotic Grasps,” Int. J. Rob. Res., vol. 34, pp. 705–724, 2015.
  • [16] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the Sequence Specificities of DNA and RNA Binding Proteins by Deep Learning,” Nat. Biotechnol., vol. 33, no. 8, pp. 831–838, Jul. 2015.
  • [17] Y. Wang, H. Mao, and Z. Yi, “Protein Secondary Structure Prediction by Using Deep Learning Method,” Knowledge-Based Syst., vol. 118, pp. 115–123, Feb. 2017.
  • [18] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale Video Classification with Convolutional Neural Networks,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.
  • [19] R. Salakhutdinov and G. Hinton, “Deep Boltzmann Machines,” in International Conference on Artificial Intelligence and Statistics, 2009, pp. 3–11.
  • [20] A. Krizhevsky and G. E. Hinton, “Using Very Deep Autoencoders for Content Based Image Retrieval,” in European Symposium on Artificial Neural Networks, 2011, pp. 489–494.
  • [21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science (80-. )., vol. 313, no. 5786, pp. 504–507, Jul. 2006.
  • [22] S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman, and S. K. Mun, “Artificial Convolution Neural Network for Medical Image Pattern Recognition,” Neural Networks, vol. 8, no. 7–8, pp. 1201–1214, Jan. 1995.
  • [23] M. J. Brusco and J. D. Cradit, “Graph Coloring, Minimum-diameter Partitioning, and the Analysis of Confusion Matrices,” J. Math. Psychol., vol. 48, no. 5, pp. 301–309, Oct. 2004.

Kumaş Hatası Tespiti için Yığınlanmış Oto-kodlayıcı Yöntemi

Year 2017, Volume: 38 Issue: 2, 342 - 354, 24.04.2017
https://doi.org/10.17776/cumuscij.300261

Abstract

Kumaş hatası tespiti sektörel kalite açısından
önem arz etmektedir. Bu hataların tespitinde, gelişen pazar hacmi ve üretim
kapasitelerinin büyüklüğü sebebiyle insan görüsü ile tespit, büyük oranda zaman
kaybına ve hata tespit oranının %60 seviyelerine kadar düşmesine sebep
olmaktadır. Bu bağlamda daha yüksek başarım elde edebilmek için görüntü işleme
alanında bir çok yöntem denenmiştir. Kumaşın kendine has bir dokusunun olması
sebebiyle, öznitelikleri çıkarılırken diğer görüntü türlerinden ayrı olarak
incelenmesi gerektirmektedir. Öznitelikler bilgisayarlı görmede özellikle
sınıflandırma problemlerinde ham madde olmaktadır. Bu yüzden doğru
öznitelikleri çıkarmak, hata tespitinde en önemli aşamadır. Bu amaç
doğrultusunda, çoklu-katman mimarisi ve kendi özniteliklerini çıkararak son
yıllarda görüntü ve ses işleme alanında büyük başarılar getirmesi ile öne çıkan
derin öğrenme kumaş hatası tespitine uygulanmıştır. Giriş verisini sıkıştırma
ya da genişletme ile temsil eden yığınlı oto-kodlayıcılar -bir derin öğrenme yöntemi-
kumaş hatası tespitinde denenmiş ve kabul edilebilir başarılar elde
edilmiştir.  Çalışmanın asıl amacı oto
kodlayıcının hiper parametreleri ve giriş değeri ile oynamalar yaparak
öznitelik çıkarımı başarısını artırmaktır. Derin modelin hiper parametrelerin
ince ayarıyla, kendi veri setimizde %96’lık bir başarı oranı elde ettik.

References

  • [1] H. Y. T. Ngan, G. K. H. Pang, and N. H. C. Yung, “Automated Fabric Defect Detection-A review,” Image Vis. Comput., vol. 29, no. 7, pp. 442–458, Jun. 2011.
  • [2] K. Kaur, N. Gupta, and K. Adhikary, “An Automatic Method to Inspect Discontinuities in Textile,” IJCSET, vol. 1, no. 8, pp. 496–498, 2011.
  • [3] Hitesh Choudhary, “Fabric Defects in Woven and Knitted Fabric,” 2012. [Online]. Available: https://www.slideshare.net/hiteshhobbit/fabric-defects-11884107. [Accessed: 20-Mar-2017].
  • [4] Ö. Kisaoğlu, “Kumaş Kalite Kontrol Sistemleri,” Pamukkale Üniversitesi Mühendislik Bilim. Derg., vol. 12, no. 2, pp. 233–241, 2006.
  • [5] A. Kumar, “Computer Vision Based Fabric Defect Detection: A Survey,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 348–363, Jan. 2008.
  • [6] K. V. N. Kumar and U. S. Ragupathy, “An Intelligent Scheme for Fault Detection in Textile Web Materials,” Int. J. Comput. Appl., vol. 46, no. 10, pp. 975–8887, 2012.
  • [7] J. L. Dorrity, “Real-Time Fabric Defect Detection And Control in Weaving Processes,” 1995.
  • [8] Y. Bengio, “Learning Deep Architectures for AI,” Found. trends® Mach. Learn., vol. 2, no. 1, pp. 1–127, 2009.
  • [9] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review and New Perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.
  • [10] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “A committee of Neural Networks for Traffic Sign Classification,” in The 2011 International Joint Conference on Neural Networks, 2011, pp. 1918–1921.
  • [11] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving Neural Networks by Preventing Co-adaptation of Feature Detectors,” Neural Evol. Comput., Jul. 2012.
  • [12] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.
  • [13] C. A. Ronao and S.-B. Cho, “Human Activity Recognition with Smartphone Sensors Using Deep Learning Neural Networks,” Expert Syst. Appl., vol. 59, pp. 235–244, Oct. 2016.
  • [14] M. Yousefi-Azar and L. Hamey, “Text Summarization Using Unsupervised Deep Learning,” Expert Syst. Appl., vol. 68, pp. 93–105, Feb. 2017.
  • [15] I. Lenz, H. Lee, and A. Saxena, “Deep Learning for Detecting Robotic Grasps,” Int. J. Rob. Res., vol. 34, pp. 705–724, 2015.
  • [16] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the Sequence Specificities of DNA and RNA Binding Proteins by Deep Learning,” Nat. Biotechnol., vol. 33, no. 8, pp. 831–838, Jul. 2015.
  • [17] Y. Wang, H. Mao, and Z. Yi, “Protein Secondary Structure Prediction by Using Deep Learning Method,” Knowledge-Based Syst., vol. 118, pp. 115–123, Feb. 2017.
  • [18] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale Video Classification with Convolutional Neural Networks,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.
  • [19] R. Salakhutdinov and G. Hinton, “Deep Boltzmann Machines,” in International Conference on Artificial Intelligence and Statistics, 2009, pp. 3–11.
  • [20] A. Krizhevsky and G. E. Hinton, “Using Very Deep Autoencoders for Content Based Image Retrieval,” in European Symposium on Artificial Neural Networks, 2011, pp. 489–494.
  • [21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science (80-. )., vol. 313, no. 5786, pp. 504–507, Jul. 2006.
  • [22] S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman, and S. K. Mun, “Artificial Convolution Neural Network for Medical Image Pattern Recognition,” Neural Networks, vol. 8, no. 7–8, pp. 1201–1214, Jan. 1995.
  • [23] M. J. Brusco and J. D. Cradit, “Graph Coloring, Minimum-diameter Partitioning, and the Analysis of Confusion Matrices,” J. Math. Psychol., vol. 48, no. 5, pp. 301–309, Oct. 2004.
There are 23 citations in total.

Details

Subjects Engineering
Journal Section Special
Authors

Abdulkadir Şeker

Ahmet Gürkan Yüksek

Publication Date April 24, 2017
Published in Issue Year 2017 Volume: 38 Issue: 2

Cite

APA Şeker, A., & Yüksek, A. G. (2017). Stacked Autoencoder Method for Fabric Defect Detection. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 38(2), 342-354. https://doi.org/10.17776/cumuscij.300261
AMA Şeker A, Yüksek AG. Stacked Autoencoder Method for Fabric Defect Detection. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. April 2017;38(2):342-354. doi:10.17776/cumuscij.300261
Chicago Şeker, Abdulkadir, and Ahmet Gürkan Yüksek. “Stacked Autoencoder Method for Fabric Defect Detection”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38, no. 2 (April 2017): 342-54. https://doi.org/10.17776/cumuscij.300261.
EndNote Şeker A, Yüksek AG (April 1, 2017) Stacked Autoencoder Method for Fabric Defect Detection. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38 2 342–354.
IEEE A. Şeker and A. G. Yüksek, “Stacked Autoencoder Method for Fabric Defect Detection”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, pp. 342–354, 2017, doi: 10.17776/cumuscij.300261.
ISNAD Şeker, Abdulkadir - Yüksek, Ahmet Gürkan. “Stacked Autoencoder Method for Fabric Defect Detection”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38/2 (April 2017), 342-354. https://doi.org/10.17776/cumuscij.300261.
JAMA Şeker A, Yüksek AG. Stacked Autoencoder Method for Fabric Defect Detection. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38:342–354.
MLA Şeker, Abdulkadir and Ahmet Gürkan Yüksek. “Stacked Autoencoder Method for Fabric Defect Detection”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, 2017, pp. 342-54, doi:10.17776/cumuscij.300261.
Vancouver Şeker A, Yüksek AG. Stacked Autoencoder Method for Fabric Defect Detection. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38(2):342-54.