Research Article
BibTex RIS Cite

Determination of Trace Amounts of Total Fe as Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry

Year 2017, Volume: 38 Issue: 2, 373 - 384, 24.04.2017
https://doi.org/10.17776/cumuscij.302489

Abstract



The method is based on the selective catalytic effect of iron (II) ions
in the presence of 1,10-phenanthroline as an activator, on the oxidation of Coomassie Brillant Blue 2R by bromate. The
catalytic reaction was monitored spectrophotometrically at 520 nm by fixed time
approach of 3 min. The optimization of the operating conditions are
investigated. Obtained optimum conditions: 1.5 mL of Coomassie Brillant
Blue 2R (1.0 x 10-4 mol L-1), 0.6 mL of bromate (0.01 mol
L-1), 1.5 mL of 1,10-phenanthroline (1.0 x 10-3 mol L-1),
reaction temperature 25oC and time 3 min in pH 2.0 at 520 nm. The
proposed method allows quantitatively
determination of iron (II) in the range of 0.05-5 mg L-1 with a
selectivity and quantification limit of 0.0141 and 0.047 mg L-1. The
relative standard deviations for five replicate determinations of 0.2 and 3 mg
L-1 iron (II) are
3.8% and 2.3%, respectively. The method was applied to determination of total iron
in some environmental surface waters such as lake, river and well water
including pharmaceutical samples used in the treatment of iron deficiency (such
as ferrosolanol and maltose) after pre-reduction of iron (III) to iron (II)
with sulfite at 40 oC at pH 4.0, and quantitative percentages of
retinas ranging from 98.7-102.7% were obtained by standard attachment-based
analysis after wet acid dissolution for possible matrix effect.

References

  • [1]. J.D. Lee, Concise Inorganic Chemistry, 4rd ed., Chapman & Hall, 1991.
  • [2]. H.R. Pouretedal, M.H. Keshavars, G.Vanony, Asian J. Chem., 2007, 4969-4976.
  • [3]. D.L. Tsalev, Manganese. In: Tsalev DL, editor. Atomic absorption spectrometry in occupational and environmental health practice. Vol. II. Determination of individual elements. Boca Raton, FL: CRC Press, Inc; 1983.
  • [4]. J.H. Martin, R.M. Gordon, S.E. Fitzwater, W.W. Broenkow, Deep-Sea Res., 1989, 36, 1793-1802.
  • [5]. D. Nicholls, The Chemistry of Iron, Cobalt and Nickel, Pergamon Press, 1973, 979-989.
  • [6]. B. Jankiewicz, B, Ptaszynski, A. Turek, Pol. J.Environ.Stud., 2002, 11, 745-749.
  • [7]. J.R. Dojlido, G.A. Best, Pren. Hall Inc. Englewood, 1993, 21, 251.
  • [8]. S. Lunvongsa, M. Oshima, S. Motomizu, Talanta, 2006, 68, 969-973.
  • [9]. K. Hirayama, N. Unohara, Anal. Chem., 1988, 60, 2573-2580.
  • [10]. T. N. Kiran Kumar, H. D. Revanasiddappa, Anal. Bioanal. Chem., 2003, 376, 1126–1130.
  • [11]. K.S. Patel, A. Shukla, A. Goswami, S.K. Chandavanshi, P. Hoffmann, Fresenius J. Anal. Chem., 2001, 369, 530-534.
  • [12]. M.A. Akl, Microchem. J., 2003, 75, 199-209.
  • [13]. C.D. Stalikas, A.Ch. Pappas, M. I. Karayannis, P.G. Veltsistas, Microchim. Acta, 2003, 142, 43–48.
  • [14]. Z. Zeng, R.A. Jewsbury, Analyst, 2000, 125, 1661-1665.
  • [15]. K. Saitoh, T. Hasebe, N. Teshima, M. Kurihara, T.Kawashima, Anal. Chim. Acta, 1998, 376, 247-254.
  • [16]. S. Lunvongsa, M. Oshima, S. Motomizu, Talanta, 2006, 68, 969-973.
  • [17]. A. Tsuji, N. Teshima, M. Kurihara, S. Nakano, T. Kawashima, Talanta, 200,52, 161-167.
  • [18]. J. Zarebski, Fresenius J. Anal. Chem. 1996, 356, 299-302.
  • [19]. W. Qin, Z.J. Zhang, F.C. Wang, Fresenius J. Anal. Chem. 1998, 360, 130-132.
  • [20]. S. Pozdniskova, A. Padaruskas, Analyst, 1998, 123, 1497-1500.
  • [21]. V. Lazic, R. Fantoni, F. Colao, A. Santagata, A. Morone, V. Spizzichino, J. Anal. Atom. Spectrom., 2004, 19, 429-436.
  • [22]. P.S. Roldan, I.L. Alcantara, C.C.F. Padilha, Fuel, 2005, 84, 305-309.
  • [23]. S. Osznadowski, A. Pikus, Talanta, 2002, 58, 773.
  • [24]. P.R. Bontchev, Talanta, 1970, 17, 499.
  • [25]. T.S. Lee, I.M. Kolthoff, D.L. Leussing, J. Am. Chem. Soc., 1948, 70, 2348–2352.
  • [26]. J.E. Dickens, F. Basolo, H.M. Neumann, J. Am. Chem. Soc., 1957, 79, 1286–1290.
  • [27]. D.W. Margerum, J. Am. Chem. Soc., 1957, 79, 2728–2733.
  • [28]. B.R. James, J.R. Lyons, R.J.P. Williams, Biochemistry. 1962, 1, 379–385.
  • [29]. G. Nord, B. Pedersen, E. Bjergbakke, J. Am. Chem. Soc., 1983, 105, 1913–1919.
  • [30]. N.Demirhan, F.T. Elmalı, Turk. J. Chem, 2003, 27, 315-321.
  • [31]. A.M. Stoyanova, Anal. Sci., 2008, 24.
  • [32]. Q.Z. Zhai, L.X. Jin, Instrum. Sci. Technol., 2009, 37, 462–471.
  • [33]. Q.Z. Zhai, Bull. Chem. Soc. Ethiop., 2009, 23, 445-450.
  • [34]. A. Stoyanova, J. Univ. Chem. Technol. Metall., 2006, 41, 205-210.
  • [35]. A.S. Amin, A.A. Gouda, Talanta, 2008, 76, 1241–1245.

Katalitik Kinetik Spektrofotometri ile Çevresel Örneklerde Eser Miktarlardaki Toplam Fe'nin Fe(II) Olarak Belirlenmesi

Year 2017, Volume: 38 Issue: 2, 373 - 384, 24.04.2017
https://doi.org/10.17776/cumuscij.302489

Abstract

Yöntem, Coomassie Brillant Blue 2R’nin bromat ile oksidasyonuna,
aktivatör olarak 1,10-fenantrolin varlığında demir (II) iyonlarının seçici
katalitik etkisine dayanır. Katalitik tepkime yaklaşık 3 dakikalık
sabitlenmiş-zaman yaklaşımı ile 520 nm’de spektrofotometrik olarak izlenmiştir.
Uygulama koşullarının optimizasyonu araştırılmıştır. Elde edilen
optimalkoşullar: 1.5 mL Coomassie Brillant Blue 2R (1.0 × 10-4 mol L-1),
0.6 mL bromat (0.01 mol L-1), 1.5 mL 1,10-fenantrolin (1.0 × 10-3
mol L-1), 25 oC tepkime sıcaklığı and pH 2.0 de, 520
nm’de 3 dakikalık tepkime zamanıdır. Önerilen yöntem, 0.0141 mg L-1 ve
0.047 mg L-1 lik seçme ve nicelleştirme sınırı ile 0.05-5 mg L-1
aralığında demir (II)’nin tayinine izin verir. 0.2 ve 3 mg L-1
demir (II)’nin beş tekrarlı analizi
için elde edilen bağıl standart sapma değerleri sırasıyla %3.8 ve %2.3 tür.
Yöntem, pH 4.0 ve 40 oC’de sülfit ile demir (III)’ün demir
(II)’ye ön indirgenmesi sonrası demir eksikliği
tedavisinde kullanılan farmasötik örnekler (ferrosolanol ve maltoz gibi) ve
göl, nehir ve kuyu suyu gibi bazı çevresel yüzey sularında toplam demir
tayininde uygulanmış, olası örnek matriks etkisi için yaş asitle çözme sonrası
standart eklemeye dayanan analizle %98.7-102.7 aralığında değişen kantitatif
gerikazanımlar elde edilmiştir. 

References

  • [1]. J.D. Lee, Concise Inorganic Chemistry, 4rd ed., Chapman & Hall, 1991.
  • [2]. H.R. Pouretedal, M.H. Keshavars, G.Vanony, Asian J. Chem., 2007, 4969-4976.
  • [3]. D.L. Tsalev, Manganese. In: Tsalev DL, editor. Atomic absorption spectrometry in occupational and environmental health practice. Vol. II. Determination of individual elements. Boca Raton, FL: CRC Press, Inc; 1983.
  • [4]. J.H. Martin, R.M. Gordon, S.E. Fitzwater, W.W. Broenkow, Deep-Sea Res., 1989, 36, 1793-1802.
  • [5]. D. Nicholls, The Chemistry of Iron, Cobalt and Nickel, Pergamon Press, 1973, 979-989.
  • [6]. B. Jankiewicz, B, Ptaszynski, A. Turek, Pol. J.Environ.Stud., 2002, 11, 745-749.
  • [7]. J.R. Dojlido, G.A. Best, Pren. Hall Inc. Englewood, 1993, 21, 251.
  • [8]. S. Lunvongsa, M. Oshima, S. Motomizu, Talanta, 2006, 68, 969-973.
  • [9]. K. Hirayama, N. Unohara, Anal. Chem., 1988, 60, 2573-2580.
  • [10]. T. N. Kiran Kumar, H. D. Revanasiddappa, Anal. Bioanal. Chem., 2003, 376, 1126–1130.
  • [11]. K.S. Patel, A. Shukla, A. Goswami, S.K. Chandavanshi, P. Hoffmann, Fresenius J. Anal. Chem., 2001, 369, 530-534.
  • [12]. M.A. Akl, Microchem. J., 2003, 75, 199-209.
  • [13]. C.D. Stalikas, A.Ch. Pappas, M. I. Karayannis, P.G. Veltsistas, Microchim. Acta, 2003, 142, 43–48.
  • [14]. Z. Zeng, R.A. Jewsbury, Analyst, 2000, 125, 1661-1665.
  • [15]. K. Saitoh, T. Hasebe, N. Teshima, M. Kurihara, T.Kawashima, Anal. Chim. Acta, 1998, 376, 247-254.
  • [16]. S. Lunvongsa, M. Oshima, S. Motomizu, Talanta, 2006, 68, 969-973.
  • [17]. A. Tsuji, N. Teshima, M. Kurihara, S. Nakano, T. Kawashima, Talanta, 200,52, 161-167.
  • [18]. J. Zarebski, Fresenius J. Anal. Chem. 1996, 356, 299-302.
  • [19]. W. Qin, Z.J. Zhang, F.C. Wang, Fresenius J. Anal. Chem. 1998, 360, 130-132.
  • [20]. S. Pozdniskova, A. Padaruskas, Analyst, 1998, 123, 1497-1500.
  • [21]. V. Lazic, R. Fantoni, F. Colao, A. Santagata, A. Morone, V. Spizzichino, J. Anal. Atom. Spectrom., 2004, 19, 429-436.
  • [22]. P.S. Roldan, I.L. Alcantara, C.C.F. Padilha, Fuel, 2005, 84, 305-309.
  • [23]. S. Osznadowski, A. Pikus, Talanta, 2002, 58, 773.
  • [24]. P.R. Bontchev, Talanta, 1970, 17, 499.
  • [25]. T.S. Lee, I.M. Kolthoff, D.L. Leussing, J. Am. Chem. Soc., 1948, 70, 2348–2352.
  • [26]. J.E. Dickens, F. Basolo, H.M. Neumann, J. Am. Chem. Soc., 1957, 79, 1286–1290.
  • [27]. D.W. Margerum, J. Am. Chem. Soc., 1957, 79, 2728–2733.
  • [28]. B.R. James, J.R. Lyons, R.J.P. Williams, Biochemistry. 1962, 1, 379–385.
  • [29]. G. Nord, B. Pedersen, E. Bjergbakke, J. Am. Chem. Soc., 1983, 105, 1913–1919.
  • [30]. N.Demirhan, F.T. Elmalı, Turk. J. Chem, 2003, 27, 315-321.
  • [31]. A.M. Stoyanova, Anal. Sci., 2008, 24.
  • [32]. Q.Z. Zhai, L.X. Jin, Instrum. Sci. Technol., 2009, 37, 462–471.
  • [33]. Q.Z. Zhai, Bull. Chem. Soc. Ethiop., 2009, 23, 445-450.
  • [34]. A. Stoyanova, J. Univ. Chem. Technol. Metall., 2006, 41, 205-210.
  • [35]. A.S. Amin, A.A. Gouda, Talanta, 2008, 76, 1241–1245.
There are 35 citations in total.

Details

Subjects Engineering
Journal Section Special
Authors

Nuket Kartal Temel

Ramazan Gürkan

Publication Date April 24, 2017
Published in Issue Year 2017 Volume: 38 Issue: 2

Cite

APA Kartal Temel, N., & Gürkan, R. (2017). Determination of Trace Amounts of Total Fe as Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 38(2), 373-384. https://doi.org/10.17776/cumuscij.302489
AMA Kartal Temel N, Gürkan R. Determination of Trace Amounts of Total Fe as Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. April 2017;38(2):373-384. doi:10.17776/cumuscij.302489
Chicago Kartal Temel, Nuket, and Ramazan Gürkan. “Determination of Trace Amounts of Total Fe As Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38, no. 2 (April 2017): 373-84. https://doi.org/10.17776/cumuscij.302489.
EndNote Kartal Temel N, Gürkan R (April 1, 2017) Determination of Trace Amounts of Total Fe as Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38 2 373–384.
IEEE N. Kartal Temel and R. Gürkan, “Determination of Trace Amounts of Total Fe as Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, pp. 373–384, 2017, doi: 10.17776/cumuscij.302489.
ISNAD Kartal Temel, Nuket - Gürkan, Ramazan. “Determination of Trace Amounts of Total Fe As Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 38/2 (April 2017), 373-384. https://doi.org/10.17776/cumuscij.302489.
JAMA Kartal Temel N, Gürkan R. Determination of Trace Amounts of Total Fe as Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38:373–384.
MLA Kartal Temel, Nuket and Ramazan Gürkan. “Determination of Trace Amounts of Total Fe As Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 38, no. 2, 2017, pp. 373-84, doi:10.17776/cumuscij.302489.
Vancouver Kartal Temel N, Gürkan R. Determination of Trace Amounts of Total Fe as Fe(II) in Environmental Samples by Catalytic Kinetic Spectrophotometry. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2017;38(2):373-84.