BibTex RIS Cite

-

Year 2014, Volume: 35 Issue: 4, 36 - 52, 05.11.2014

Abstract

In this study, estimated values were calculated of the points which did not collect data for outdoor gamma dose rates in Artvin by using back-propagation artificial neural network method (BPANN) and distribution of the obtained rates mapped. The outdoor gamma dose rates were measured at 92 stations approximately 2 km far away each other. Among the all stations, a part of 2/3 was separated randomly for creating model and the other part of 1/3 for validation test. The maximum and minimum values for outdoor gamma dose rate were measured 0.352 µSv/h and 0.038 µSv/h, respectively. Input parameters were used for the artificial neural networks which is directly affect the gamma dose rates by six factors, such as coordinates (latitude, longitude), altitude, soil type, geological formations, and the annual average intensity of sunlight. The estimated results obtained the model were compared with actual values and a good agreement was observed. End of the study, the model was evaluated for all workspace and interpolated estimation maps of outdoor gamma doses rate for Artvin were created from the results by making estimations for every 100m

References

  • UNSCEAR (2000) Source and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York
  • Rafique M, Rahman SU, Basharat M, et al. (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. Journal of Radiation Research and Applied Sciences 7:29–35. doi: http://dx.doi.org/10.1016/j.jrras.2013.11.005
  • Hiemstra PH, Pebesma EJ, Twenho CJW (2009) Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences 35:1711–1721. doi: 10.1016/j.cageo.2008.10.011
  • Quarto M, Pugliese M, Roca V (2013) Gamma dose rate measurements in dwellings of Campania region, South Italy. Journal of environmental radioactivity 115:114–7. doi: 10.1016/j.jenvrad.2012.07.016
  • Taskin H, Karavus M, Ay P, et al. (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of environmental radioactivity 100:49–53. doi: 10.1016/j.jenvrad.2008.10.012
  • Norbani NE, Abdullah Salim NA, Saat A, et al. (2014) Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia. Radiation Physics and Chemistry In Press:1–6. doi: 10.1016/j.radphyschem.2014.04.008
  • Sanusi MSM, Ramli AT, Gabdo HT, et al. (2014) Isodose mapping of terrestrial gamma radiation dose rate of Selangor state , Kuala Lumpur and Putrajaya , Malaysia. Journal of Environmental Radioactivity 135:67–74. doi: 10.1016/j.jenvrad.2014.04.004
  • Zhang W, Friese J, Ungar K (2013) The ambient gamma dose-rate and the inventory of fission products estimations with the soil samples collected at Canadian embassy in Tokyo during Fukushima nuclear accident. Journal of Radioanalytical and Nuclear Chemistry 296:69–73.
  • Kobya Y, Damla N, Cevik U, et al. (2010) Radiological characterization of natural spring waters in the Eastern Black Sea Region, Turkey. Environ Forensics 11:187–192.
  • Tondel M, Lindgren P, Hellström L, et al. (2011) Risk of malignancies in relation to terrestrial gamma radiation in a Swedish population cohort. The Science of the total environment 409:471–477. doi: 10.1016/j.scitotenv.2010.10.052
  • Karahan G, Bayulken a (2000) Assessment of gamma dose rates around Istanbul (Turkey). Journal of Environmental Radioactivity 47:213–221. doi: 10.1016/S0265-931X(99)00034- X
  • Baykara O, Doğru M (2009) Determination of terrestrial gamma, U-238, Th-232 and K-40 in soil 10.1016/j.radmeas.2008.10.001 zones. Radiation Measurements 44:116–121. doi:
  • Mercier M, Falgueres C (2007) Field gamma dose-rate measurement with a NaI ( Tl ) detector : re-evaluation of the “ threshold ” technique. 25:2–5.
  • EUR 21595 EN (2005) Automatic mapping algorithms for routine andemergency monitoring data. Report on the spatial interpolation comparison 2004 (SIC2004) exercise.In:Dubois, G.(Ed). 150.
  • Dai L, Wei H, Wang L (2007) Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: a case study from the city of Baoji, China. Environmental research 104:201–8. doi: 10.1016/j.envres.2006.11.005
  • McGrath D, Zhang C, Carton OT (2004) Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution 127:239–248. doi: 10.1016/j.envpol.2003.07.002
  • Charro E, Pardo R, Peña V (2013) Statistical analysis of the spatial distribution of radionuclides in soils around a coal- fi red power plant in Spain. Journal of Environmental Radioactivity 124:84–92. doi: 10.1016/j.jenvrad.2013.04.011
  • Savelieva E (2005) Using ordinary Kriging to model radioactive contamination data. Applied GIS 1:10–1–10–10.
  • Pebesma EJ (2005) Mapping Radioactivity from Monitoring Data: Automating the Classical Geostatistical Approach. Applied GIS 1:11–1–11–17.
  • Statistic Department of Turkey (2014) http://www.webcitation.org/6NPUa8fse. Available date: 08.09.2014
  • O’Brien K, Friedberg W, Sauer HH, Smart DF (1996) Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environment international 22:9–44.
  • Mishev AL, Hristova E (2012) Recent gamma background measurements at high mountain altitude. 10.1016/j.jenvrad.2012.04.017 of environmental radioactivity 113:77–82. doi:
  • Ustaomer T, Robertson a. HF, Ustaomer P a., et al. (2012) Constraints on Variscan and Cimmerian magmatism and metamorphism in the Pontides (Yusufeli-Artvin area), NE Turkey from U-Pb dating and granite geochemistry. Geological Society, London, Special Publications 372:49–74. doi: 10.1144/SP372.13
  • Chiozzi P, Pasquale V, Verdoya M (2002) Heat from Radioactivite Elements in Youngs Volcanics by Gamma-Ray Spectrometry. Journal of Volcanology and Geothermal Research 119:205–214.
  • Otansev P, Karahan G, Kam E, et al. (2012) Assessment of natural radioactivity concentrations and gamma dose rate levels in Kayseri, Turkey. Radiation Protection Dosimetry 148:227–236.
  • USGS (2013) Digital elevation maps (DEM) data sets. http://earthexplorer.usgs.gov/. Accessed 22 Sep 2014
  • Yuksek T, Ölmez Z (2002) A general assessment of climate, soil structure, forest areas, growing stock and some forestry applications of Artvin region. Journal of Artvin Forestry Faculty Kafkas University 3:50–62.
  • Degerlier M, Karahan G, Ozger G (2008) Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey. Journal of environmental radioactivity 99:1018– 25. doi: 10.1016/j.jenvrad.2007.12.015
  • Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Role of sediment characteristics on natural radiation level of the Vaigai river sediment, Tamilnadu, India. Journal of environmental radioactivity 127:64–74. doi: 10.1016/j.jenvrad.2013.09.010
  • MTA (2002) 1:500 000–scale map of Turkey. General Directorate of Mineral Research and Exploration (MTA), Ankara,Turkey
  • Yavuz Özalp A, Akıncı H, Temuçin S (2013) Determining Topographic and Some Physical Characteristics of the Land in Artvin City and Investigating Relationship between These Characteristics with Land Cover. Journal of Forestry Faculty Artvin Coruh University 14:292–309.
  • Kohonen T (1987) State Of The Art In Neural Computing. IEEE First International Conference on Neural Networks 1:79–90.
  • Caudill M (1987) Neural networks primer, part I. AI Expert 2:46–52.
  • Öztemel E (2003) Yapay Sinir Ağları. Papatya yayıncılık, İstanbul
  • Şen Z (2004) Yapay sinir ağları ilkeleri. Su vakfı yayınları, İstanbul
  • Dede A (2009) İznik göl suyu kalite parametrelerinin yapay sinir ağlarıyla değerlendirilmesi. İstanbul Teknik Üniversitesi
  • Dorvlo ASS, Jervase J a., Al-Lawati A (2002) Solar radiation estimation using artificial neural networks. Applied Energy 71:307–319. doi: 10.1016/S0306-2619(02)00016-8
  • Şenkal O, Kuleli T (2009) Estimation of solar radiation over Turkey using artificial neural network 10.1016/j.apenergy.2008.06.003 data. Applied Energy 86:1222–1228. doi:
  • Sözen A, Arcaklıoğlu E, Özalp M, Çağlar N (2005) Forecasting based on neural network approach of solar potential in Turkey. Renewable Energy 30:1075–1090. doi: 10.1016/j.renene.2004.09.020
  • Günther F, Fritsch S (2010) Neuralnet : Training of Neural Networks. The R Journal 2:30– 38.
  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, Michigan
  • Quantum GIS Development Team (2014) Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.

Yapay Sinir ağları yöntemi ile Artvin ilinde ölçülen gama doz oranlarının ara değer modellemesi ve haritalanması

Year 2014, Volume: 35 Issue: 4, 36 - 52, 05.11.2014

Abstract

Bu çalışmada geri beslemeli yapay sinir ağları yöntemi (GBYSA) ile Artvin ilindeki Outdoor gamma doz oranları için örnek alınmamış noktaların tahmini değerleri hesaplanmış ve bölgedeki dağılım belirlenerek haritalandırılmıştır. Outdoor gama doz oranını (the outdoor gamma dose rates) aralarında ortalama 2 km olan 92 numuneleme istasyonundan ölçülmüş ve tüm istasyonun 2/3’lik kısmı (61 istasyon) model oluşturmak, diğer 1/3’ lik kısmı (31 istasyon) doğrulama testi için rastgele ayrılmıştır. Outdoor gama doz oranını için maksimum ve minimum değerleri sırasıyla, 0.352 mSv/h ve 0.038 mSv/h olarak belirlenmiştir. Yapay sinir ağlarına giriş parametresi olarak koordinatlar (Enlem, Boylam), Rakım, Toprak tipi, Jeolojik formasyon ve yıllık ortalama Güneşlenme şiddeti (The intensity of sunlight) gibi Gama doz oranını doğrudan etkilen 6 faktör kullanılmıştır.  Model sonucunda oluşturulan geri beslemeli yapay sinir ağı ile tahmin edilen sonuçlar gerçek değerlerle karşılaştırılmış ve iyi bir uyum gözlenmiştir. Çalışmanın sonunda GBYSA ile oluşturulan model için tüm çalışma alanı için değerlendirilmiş ve her 100 m de bir tahminler yapılarak elde edilen sonuçlardan Artvin için Outdoor gamma doze rate aradeğer tahmin haritası oluşturulmuştur.

References

  • UNSCEAR (2000) Source and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York
  • Rafique M, Rahman SU, Basharat M, et al. (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. Journal of Radiation Research and Applied Sciences 7:29–35. doi: http://dx.doi.org/10.1016/j.jrras.2013.11.005
  • Hiemstra PH, Pebesma EJ, Twenho CJW (2009) Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences 35:1711–1721. doi: 10.1016/j.cageo.2008.10.011
  • Quarto M, Pugliese M, Roca V (2013) Gamma dose rate measurements in dwellings of Campania region, South Italy. Journal of environmental radioactivity 115:114–7. doi: 10.1016/j.jenvrad.2012.07.016
  • Taskin H, Karavus M, Ay P, et al. (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of environmental radioactivity 100:49–53. doi: 10.1016/j.jenvrad.2008.10.012
  • Norbani NE, Abdullah Salim NA, Saat A, et al. (2014) Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia. Radiation Physics and Chemistry In Press:1–6. doi: 10.1016/j.radphyschem.2014.04.008
  • Sanusi MSM, Ramli AT, Gabdo HT, et al. (2014) Isodose mapping of terrestrial gamma radiation dose rate of Selangor state , Kuala Lumpur and Putrajaya , Malaysia. Journal of Environmental Radioactivity 135:67–74. doi: 10.1016/j.jenvrad.2014.04.004
  • Zhang W, Friese J, Ungar K (2013) The ambient gamma dose-rate and the inventory of fission products estimations with the soil samples collected at Canadian embassy in Tokyo during Fukushima nuclear accident. Journal of Radioanalytical and Nuclear Chemistry 296:69–73.
  • Kobya Y, Damla N, Cevik U, et al. (2010) Radiological characterization of natural spring waters in the Eastern Black Sea Region, Turkey. Environ Forensics 11:187–192.
  • Tondel M, Lindgren P, Hellström L, et al. (2011) Risk of malignancies in relation to terrestrial gamma radiation in a Swedish population cohort. The Science of the total environment 409:471–477. doi: 10.1016/j.scitotenv.2010.10.052
  • Karahan G, Bayulken a (2000) Assessment of gamma dose rates around Istanbul (Turkey). Journal of Environmental Radioactivity 47:213–221. doi: 10.1016/S0265-931X(99)00034- X
  • Baykara O, Doğru M (2009) Determination of terrestrial gamma, U-238, Th-232 and K-40 in soil 10.1016/j.radmeas.2008.10.001 zones. Radiation Measurements 44:116–121. doi:
  • Mercier M, Falgueres C (2007) Field gamma dose-rate measurement with a NaI ( Tl ) detector : re-evaluation of the “ threshold ” technique. 25:2–5.
  • EUR 21595 EN (2005) Automatic mapping algorithms for routine andemergency monitoring data. Report on the spatial interpolation comparison 2004 (SIC2004) exercise.In:Dubois, G.(Ed). 150.
  • Dai L, Wei H, Wang L (2007) Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: a case study from the city of Baoji, China. Environmental research 104:201–8. doi: 10.1016/j.envres.2006.11.005
  • McGrath D, Zhang C, Carton OT (2004) Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution 127:239–248. doi: 10.1016/j.envpol.2003.07.002
  • Charro E, Pardo R, Peña V (2013) Statistical analysis of the spatial distribution of radionuclides in soils around a coal- fi red power plant in Spain. Journal of Environmental Radioactivity 124:84–92. doi: 10.1016/j.jenvrad.2013.04.011
  • Savelieva E (2005) Using ordinary Kriging to model radioactive contamination data. Applied GIS 1:10–1–10–10.
  • Pebesma EJ (2005) Mapping Radioactivity from Monitoring Data: Automating the Classical Geostatistical Approach. Applied GIS 1:11–1–11–17.
  • Statistic Department of Turkey (2014) http://www.webcitation.org/6NPUa8fse. Available date: 08.09.2014
  • O’Brien K, Friedberg W, Sauer HH, Smart DF (1996) Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environment international 22:9–44.
  • Mishev AL, Hristova E (2012) Recent gamma background measurements at high mountain altitude. 10.1016/j.jenvrad.2012.04.017 of environmental radioactivity 113:77–82. doi:
  • Ustaomer T, Robertson a. HF, Ustaomer P a., et al. (2012) Constraints on Variscan and Cimmerian magmatism and metamorphism in the Pontides (Yusufeli-Artvin area), NE Turkey from U-Pb dating and granite geochemistry. Geological Society, London, Special Publications 372:49–74. doi: 10.1144/SP372.13
  • Chiozzi P, Pasquale V, Verdoya M (2002) Heat from Radioactivite Elements in Youngs Volcanics by Gamma-Ray Spectrometry. Journal of Volcanology and Geothermal Research 119:205–214.
  • Otansev P, Karahan G, Kam E, et al. (2012) Assessment of natural radioactivity concentrations and gamma dose rate levels in Kayseri, Turkey. Radiation Protection Dosimetry 148:227–236.
  • USGS (2013) Digital elevation maps (DEM) data sets. http://earthexplorer.usgs.gov/. Accessed 22 Sep 2014
  • Yuksek T, Ölmez Z (2002) A general assessment of climate, soil structure, forest areas, growing stock and some forestry applications of Artvin region. Journal of Artvin Forestry Faculty Kafkas University 3:50–62.
  • Degerlier M, Karahan G, Ozger G (2008) Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey. Journal of environmental radioactivity 99:1018– 25. doi: 10.1016/j.jenvrad.2007.12.015
  • Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Role of sediment characteristics on natural radiation level of the Vaigai river sediment, Tamilnadu, India. Journal of environmental radioactivity 127:64–74. doi: 10.1016/j.jenvrad.2013.09.010
  • MTA (2002) 1:500 000–scale map of Turkey. General Directorate of Mineral Research and Exploration (MTA), Ankara,Turkey
  • Yavuz Özalp A, Akıncı H, Temuçin S (2013) Determining Topographic and Some Physical Characteristics of the Land in Artvin City and Investigating Relationship between These Characteristics with Land Cover. Journal of Forestry Faculty Artvin Coruh University 14:292–309.
  • Kohonen T (1987) State Of The Art In Neural Computing. IEEE First International Conference on Neural Networks 1:79–90.
  • Caudill M (1987) Neural networks primer, part I. AI Expert 2:46–52.
  • Öztemel E (2003) Yapay Sinir Ağları. Papatya yayıncılık, İstanbul
  • Şen Z (2004) Yapay sinir ağları ilkeleri. Su vakfı yayınları, İstanbul
  • Dede A (2009) İznik göl suyu kalite parametrelerinin yapay sinir ağlarıyla değerlendirilmesi. İstanbul Teknik Üniversitesi
  • Dorvlo ASS, Jervase J a., Al-Lawati A (2002) Solar radiation estimation using artificial neural networks. Applied Energy 71:307–319. doi: 10.1016/S0306-2619(02)00016-8
  • Şenkal O, Kuleli T (2009) Estimation of solar radiation over Turkey using artificial neural network 10.1016/j.apenergy.2008.06.003 data. Applied Energy 86:1222–1228. doi:
  • Sözen A, Arcaklıoğlu E, Özalp M, Çağlar N (2005) Forecasting based on neural network approach of solar potential in Turkey. Renewable Energy 30:1075–1090. doi: 10.1016/j.renene.2004.09.020
  • Günther F, Fritsch S (2010) Neuralnet : Training of Neural Networks. The R Journal 2:30– 38.
  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, Michigan
  • Quantum GIS Development Team (2014) Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Editorial
Authors

Cafer Yeşilkanat

Yaşar Kobya This is me

Halim Taşkın This is me

Uğur Çevik

Publication Date November 5, 2014
Published in Issue Year 2014 Volume: 35 Issue: 4

Cite

APA Yeşilkanat, C., Kobya, Y., Taşkın, H., Çevik, U. (2014). Yapay Sinir ağları yöntemi ile Artvin ilinde ölçülen gama doz oranlarının ara değer modellemesi ve haritalanması. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 35(4), 36-52.
AMA Yeşilkanat C, Kobya Y, Taşkın H, Çevik U. Yapay Sinir ağları yöntemi ile Artvin ilinde ölçülen gama doz oranlarının ara değer modellemesi ve haritalanması. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. December 2014;35(4):36-52.
Chicago Yeşilkanat, Cafer, Yaşar Kobya, Halim Taşkın, and Uğur Çevik. “Yapay Sinir ağları yöntemi Ile Artvin Ilinde ölçülen Gama Doz oranlarının Ara değer Modellemesi Ve Haritalanması”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 35, no. 4 (December 2014): 36-52.
EndNote Yeşilkanat C, Kobya Y, Taşkın H, Çevik U (December 1, 2014) Yapay Sinir ağları yöntemi ile Artvin ilinde ölçülen gama doz oranlarının ara değer modellemesi ve haritalanması. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 35 4 36–52.
IEEE C. Yeşilkanat, Y. Kobya, H. Taşkın, and U. Çevik, “Yapay Sinir ağları yöntemi ile Artvin ilinde ölçülen gama doz oranlarının ara değer modellemesi ve haritalanması”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 35, no. 4, pp. 36–52, 2014.
ISNAD Yeşilkanat, Cafer et al. “Yapay Sinir ağları yöntemi Ile Artvin Ilinde ölçülen Gama Doz oranlarının Ara değer Modellemesi Ve Haritalanması”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 35/4 (December 2014), 36-52.
JAMA Yeşilkanat C, Kobya Y, Taşkın H, Çevik U. Yapay Sinir ağları yöntemi ile Artvin ilinde ölçülen gama doz oranlarının ara değer modellemesi ve haritalanması. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2014;35:36–52.
MLA Yeşilkanat, Cafer et al. “Yapay Sinir ağları yöntemi Ile Artvin Ilinde ölçülen Gama Doz oranlarının Ara değer Modellemesi Ve Haritalanması”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 35, no. 4, 2014, pp. 36-52.
Vancouver Yeşilkanat C, Kobya Y, Taşkın H, Çevik U. Yapay Sinir ağları yöntemi ile Artvin ilinde ölçülen gama doz oranlarının ara değer modellemesi ve haritalanması. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2014;35(4):36-52.