Research Article
BibTex RIS Cite
Year 2015, Volume: 36 Issue: 1, 1 - 16, 01.03.2015

Abstract

References

  • Smith, D.M., Grasty, R.C., Theodosiou, N.A., Tabin, C.J., Nascone-Yoder, N.M., 2000. Evolutionary relationships between the amphibia, avian, and mamalian stomachs. Evol. Develop. 2 (6): 348-359.
  • McNab, B.K., 1986. The influence of food habits on the energetics of Eutharian mammals. Ecol. Monogr. 56 (1): 1-19.
  • Corp, N., Gorman, M.L., Speakman, J.R., 1997. Apparent absorption efficience and gut morphometry of wood mice, Apodemus sylvaticus, from two to distinct populations with different diets. Physiol. Zool. 70 (6): 610-614.
  • Del Valle, J.C., Busch, C., 2003. Body composition and gut length of Akodon azarae (Muridae: Sigmodontidae): relatioship with energetic requirements. Acta Theriol. 48 (3): 289- 300.
  • Wilczyñska, B., Pryzstalski, A., 1998. Morphometry and histometry of the alimentry canal in Bufo orientalis. Zoologica Poloniae. 43(1-4): 25-34.
  • Wilczyñska, B., 1998. Anatomical structure and size of large intestinal mucosa in selected species of shrews and rodents. Acta Theriol. 43(4): 363-370.
  • Ellis, B.A., Mills, J.N., Kennedy, E.J.T, Maızteguı, J.I., Childs E., 1994. The relationship among diet, alimentary tract morphology, and life history for five species of rodents from the central Argentine pampa. Acta Theriol. 39: 345–355.
  • Vorontsov, N.N., 1962. The ways of food specialization and evolution of the alimentary system in Muroidea. In: Kratochvíl J. & Pelikán J. (eds), Symposium Theriological Proceedings of the International Symposium on Methods of Mammalogical Investigation, Brno. Publ. House Academia Praha, 360-377.
  • Przystalski, A., 1980. The dimensions of the mucosa and structure of the alimentary canal in some reptiles. Acta Biol. Cracov. Zool. 22: 1-3.
  • Garland, J.T., 1984. Physiological correlates of locomotory performance in a lizard: an allometric approach. American J. Physiol. 81: 341-344.
  • Burness, G.P., Ydenberg, R.C., Hochachka, P.W., 1998. Interindividual variability in body composition and resting oxygen consumption rate in breeding tree swallows. Tachycineta bicolor. Physiol. Zool. 71 (3): 247-256.
  • Derting, T.L., Bogue, B.A., 1993. Responses of the gut to moderate energy demands in a small herbivore (Microtus penssylvanicus). J. Mammal. 74: 59-68.
  • Koteja, P., 1996. Limits to the energy budget in e rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol. Zool. 69(5): 994-1020.
  • Peterson, C.C., Nagy, K.A., Diamond, J., 1990. Sustained metabolic scope. Proc. Natl. Acad. Sci. 87: 2324-2328.
  • Snipes, R.L, 1994. Morphometric methods for determining surface enlargement at the microscopic level in the large intestine and their application. [In the digestive system in mammals. Food, form and function. Chivers, D.J., Langer, P., eds]. Cambridge University Press, Cambridge: 446.
  • Dorozynska, N., Cymborowski, B., Radzikowska, M., 1971. The effect of diet on the structure and function of the alimentary canal of the representatives of various animal groups. Przegl. Zool. 15: 40-45.
  • Gross, J.E., Wang, Z., Wunder, B.A., 1985. Effects of food quality and energy needs changes in gut morphology and capacity of Microtus ochrogaster. J. Mammal. 66: 661-667.
  • Hammond, K.A, Wunder, B.A., 1991. The role of the diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogastr. Physiol. Zool. 64: 541-567.
  • Bozinovic, F., Novoa, F., Veloso, C., 1990. Seaosonal changes in energy expenditure and digestive tract of Abrothix andinus (Cricetidae) in the Andes range. Physiol. Zool. 63: 1216- 1231.
  • Hammond, K.A., 1993. Seasonal changes in gut size of the wild prairie vole (Microtus ochrogaster). Can. J. Zool. 71: 820-827.
  • Borkowska, A. 1995. Seasonal changes in gut morphology of the striped field mouse (Apodemus agrarius). Can. J. Zool. 73: 1095-1099.
  • Weiner, J., 1992. Physiological limits to sustainable energy budget in birds and mammals: ecological implications. Trends Ecol. Evol. 7: 384-388.
  • Derting, T.L., Noakes, E.B., 1995. Seasonal changes in gut capacity in the white-footed mouse (Peromycus leucopus) and meadow vole (Microtus pennsylvanicus). Can. J. Zool. 65: 2159-2162.
  • Leonhardt, H., 1990. Histologie, Zytogie, and Mikroana desmenschen Stuttgart. New York. Auflag Thieme Verlag, 2: 1-5.
  • Dunsford, BR., Knabe, D.A, Haensly W.E, 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early weaned pig. J. Anim. Sci. 67: 1855– 1863.
  • Nabuurs, M.J.A., Hoogendoorn, A., van der Molen, E.J., van Osta, A.L.M., 1993. Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Sci. 55, 78–84.
  • Pluske, J.R., Williams, I.H., Aherne, F.X., 1996a. Maintenance of villus height and crypt depth in piglets by providing continuous nutrition after weaning. J. Anim. Sci. 62: 131-144.
  • Makinde, M.O., Umapathy, E., Akingbemi, B.T., Mandisodza, K.T., Skadhauge, E., 1996. Effects of dietary soybean and cowpea on gut morphology and faecal composition in creep and noncreep-fed pigs. J. Am. Vet. Med. Assoc. 43: 75–85.
  • Pluske, J.R., Williams, I.H., Aherne, F.X., 1996b. Villus height and crypt depth in piglets in response to increases in the intake of cows’ milk after weaning. J. Anim. Sci. 62: 145–158.
  • Zijlstra, R., Whang, K.Y., Easter, R.A., Odle, J., 1996. Effect of feeding a milk replacer to early-weaned pigs on growth, body composition, and small intestinal morphology, compared with suckled littermates. J. Anim. Sci. 74: 2948–2959.
  • Jin, L., Reynolds, L.P., Redmer, D.A., Caton, J.S., Crenshaw, J.D., 1994. Effects of dietary fiber on intestinal growth, cell proliferation and morphology in growing pigs. J. Anim. Sci. 72: 2270–2278.
  • Redlich, J., Souffrant, W.B., Laplace, J.P., Hennig, U., Berg, R., Mouwen, JM., 1997. Morphometry of the small intestine in pigs with ileo-rectal anastomosis. Can. J. Vet. Res. 61: 21–27.
  • Brunsgaard, G., 1998. Weaning and the weaning diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short chain fatty acids in the large intestine and blood. J. Nutr. 128: 947-953.
  • Yasar, S., Forbes, J.M., 1999. Performance and gastro-intestinal response of broiler chickens fed on cereal grain-based feeds soaked in water. British Poultry Science 40: 65-76.
  • Gee, J.M., Lee-Finglas, W., Wortley, G.W., Johnson, I.T, 1995. Fermentable carbohydrates elevate plasma enteroglucagon but high viscosity is also necessary to stimulate small bowel mucosal cell proliferation in rats. J. Nutr. 126: 373–379.
  • Wiese, F., Simon, O., Weyrauch, K.D., 2003. Morphology of the Small Intestine of Weaned Piglets and a Novel Method for Morphometric Evaluation. Anat. Histol. Embryol. 32: 102-109. [37] Gürcü, B., Başımoğlu Koca, Y., Balcan, E., 2004. Histological structure of the skin of the Southern Crested Newt, Triturus karelinii (Salamandidae: Urodela). Zoology in the Middle East 31: 39-46.
  • Başımoğlu Koca, Y., Gürcü, B., Balcan, E., 2004. The Histological Investigation of Liver Tissues in Triturus karelinii and Triturus vulgaris (Salamandrdae, Urodela). Russian Journal of Herpetology 11(3): 223-229.
  • Karakahya, F., Başımoğlu Koca, Y. Mertensiella luschani’nin İnce Barsak Yapısı. XV. Ulusal Biyoloji Öğrenci Kongresi, Gaziantep Üniversitesi. 27-30 Ağustos 2008.
  • Bancroft, J.D., Cook, H.C., 1994. Manual of histological techniques and their diagnostic application. Churchill Livingstone, New York, p 457.
  • Aşar, M., Kocamaz, E., Demir, N., Üstünel, İ., Demir, R., 1995. Histological and morphometrical study on the changes of the fundic wall of rat stomach in prenatal period. Tr. J. Zool. 19: 285-290.
  • Yeomans, N.D., Trier, J.S., 1976. Epithelial cell proliferation and migration in the developing rat gastric mucosa. Dev. Biol. 53: 206-216.
  • Walker, V.F., Lien, K.F., 1994. Functional Anatomy of the Vertebrates: an evolutionary perspective. Saunders College Publishing, New York.
  • Smith D.M., Tabin CJ., 1999. BMP signaling species the pylorusic sphincter. Nature 402: 748-749. [45] Skoczeñ, S., 1966. Stomach contents of the mole, Talpa europaea L. 1758, from southern Poland. Acta Theriol. 11(28): 551-575.
  • Kozlowska, K., Wilczynska, B., Jaroszewska, M., 2004. Histomery of the alimentry canal wall of sexually immature males and females of Sorex araneus L. Zoologica Poloniae 49/1-4: 251-264. [47] Ruiz, M.C., Abad, M.J., González, B., Acosta, A., Michelangeli, F., 1993. Comparison of acid and pepsinogen secretion control by oxynticopeptic cell amphibians. Acta Cient. Venez. 44 (2): 89-94.
  • Caceci, T., Hrubec, T.C., 1990. Histology and ultrastructure of the gut in the black mollie (Poecillia spp.), a hybrid teleoset. J. Morphol. 204:265-280.
  • Gargiulo, A.M., Ceccarelli, P., DallAglio, C., Pedini, V., 1998. Histology and ultrastructure of the gut of the tilapia (Tilapia spp.), a hybrid teleoset. Anat. Histol. Embriyol. 27: 89-94.
  • Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder N.M., 2000. Evolutionary relationships between the amphibia, avian, and mammalian stomachs. Evolution and Development 2 (6): 348-359.
  • Mali, L.B., Bulog, B., 2004. Histology and ultrastructure of the gut epithelium of the Neotecnic Cave Salamander, Proteus anguinus (Amphibia, Caudata). J. Morph. 259: 82-89.
  • Smith, D.M., Tabin, C.J., 1999. BMP signaling specifies the pylorusic sphincter. Nature 402: 748-749.
  • Potten, C.S., 1998. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos. Trans. R. Soc. Lond. B. Biol. Sci.353: 821–830.
  • Gebczyñska, Z., Gebczyñski, M., 1971. Length and weight of the alimentary tract of Root of Vole. Acta Theriol. 16: 359-369.
  • Schieck, J.O., Millar, J.S., 1985. Alimentary tract measurements as indicators of diets of small mammals. Mammalia 49: 101-103.

The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study

Year 2015, Volume: 36 Issue: 1, 1 - 16, 01.03.2015

Abstract

In this study, the stomach and small intestine structures of M. luschani and T. karelinii were evaluated in terms of histologically and histometrically.Thestomach and small intestine tissues of M. luschani and T. karelinii have similar characteristics.Mucosa consists of lamina propria/submucosa, tunica muscularis and tunica serosa layers. Histometrical results shows that M. luschani’s fundus (t=0,003; p<0,05) and pylorus (t=0,000; p<0,05) epithelial thickness and mean lumen area (t=0,009; p<0,05) are larger than T. karelinii’s fundus-pylorusepithelial thickness and mean lumen area.  In intestine, M. luschani’s lamina epithelialis thickness mean (t=0,003; p<0,05) and mean lumen area (t=0,009; p<0,05) are also larger than T. karelinii’s epithelial thickness and mean lumen area.

References

  • Smith, D.M., Grasty, R.C., Theodosiou, N.A., Tabin, C.J., Nascone-Yoder, N.M., 2000. Evolutionary relationships between the amphibia, avian, and mamalian stomachs. Evol. Develop. 2 (6): 348-359.
  • McNab, B.K., 1986. The influence of food habits on the energetics of Eutharian mammals. Ecol. Monogr. 56 (1): 1-19.
  • Corp, N., Gorman, M.L., Speakman, J.R., 1997. Apparent absorption efficience and gut morphometry of wood mice, Apodemus sylvaticus, from two to distinct populations with different diets. Physiol. Zool. 70 (6): 610-614.
  • Del Valle, J.C., Busch, C., 2003. Body composition and gut length of Akodon azarae (Muridae: Sigmodontidae): relatioship with energetic requirements. Acta Theriol. 48 (3): 289- 300.
  • Wilczyñska, B., Pryzstalski, A., 1998. Morphometry and histometry of the alimentry canal in Bufo orientalis. Zoologica Poloniae. 43(1-4): 25-34.
  • Wilczyñska, B., 1998. Anatomical structure and size of large intestinal mucosa in selected species of shrews and rodents. Acta Theriol. 43(4): 363-370.
  • Ellis, B.A., Mills, J.N., Kennedy, E.J.T, Maızteguı, J.I., Childs E., 1994. The relationship among diet, alimentary tract morphology, and life history for five species of rodents from the central Argentine pampa. Acta Theriol. 39: 345–355.
  • Vorontsov, N.N., 1962. The ways of food specialization and evolution of the alimentary system in Muroidea. In: Kratochvíl J. & Pelikán J. (eds), Symposium Theriological Proceedings of the International Symposium on Methods of Mammalogical Investigation, Brno. Publ. House Academia Praha, 360-377.
  • Przystalski, A., 1980. The dimensions of the mucosa and structure of the alimentary canal in some reptiles. Acta Biol. Cracov. Zool. 22: 1-3.
  • Garland, J.T., 1984. Physiological correlates of locomotory performance in a lizard: an allometric approach. American J. Physiol. 81: 341-344.
  • Burness, G.P., Ydenberg, R.C., Hochachka, P.W., 1998. Interindividual variability in body composition and resting oxygen consumption rate in breeding tree swallows. Tachycineta bicolor. Physiol. Zool. 71 (3): 247-256.
  • Derting, T.L., Bogue, B.A., 1993. Responses of the gut to moderate energy demands in a small herbivore (Microtus penssylvanicus). J. Mammal. 74: 59-68.
  • Koteja, P., 1996. Limits to the energy budget in e rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol. Zool. 69(5): 994-1020.
  • Peterson, C.C., Nagy, K.A., Diamond, J., 1990. Sustained metabolic scope. Proc. Natl. Acad. Sci. 87: 2324-2328.
  • Snipes, R.L, 1994. Morphometric methods for determining surface enlargement at the microscopic level in the large intestine and their application. [In the digestive system in mammals. Food, form and function. Chivers, D.J., Langer, P., eds]. Cambridge University Press, Cambridge: 446.
  • Dorozynska, N., Cymborowski, B., Radzikowska, M., 1971. The effect of diet on the structure and function of the alimentary canal of the representatives of various animal groups. Przegl. Zool. 15: 40-45.
  • Gross, J.E., Wang, Z., Wunder, B.A., 1985. Effects of food quality and energy needs changes in gut morphology and capacity of Microtus ochrogaster. J. Mammal. 66: 661-667.
  • Hammond, K.A, Wunder, B.A., 1991. The role of the diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogastr. Physiol. Zool. 64: 541-567.
  • Bozinovic, F., Novoa, F., Veloso, C., 1990. Seaosonal changes in energy expenditure and digestive tract of Abrothix andinus (Cricetidae) in the Andes range. Physiol. Zool. 63: 1216- 1231.
  • Hammond, K.A., 1993. Seasonal changes in gut size of the wild prairie vole (Microtus ochrogaster). Can. J. Zool. 71: 820-827.
  • Borkowska, A. 1995. Seasonal changes in gut morphology of the striped field mouse (Apodemus agrarius). Can. J. Zool. 73: 1095-1099.
  • Weiner, J., 1992. Physiological limits to sustainable energy budget in birds and mammals: ecological implications. Trends Ecol. Evol. 7: 384-388.
  • Derting, T.L., Noakes, E.B., 1995. Seasonal changes in gut capacity in the white-footed mouse (Peromycus leucopus) and meadow vole (Microtus pennsylvanicus). Can. J. Zool. 65: 2159-2162.
  • Leonhardt, H., 1990. Histologie, Zytogie, and Mikroana desmenschen Stuttgart. New York. Auflag Thieme Verlag, 2: 1-5.
  • Dunsford, BR., Knabe, D.A, Haensly W.E, 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early weaned pig. J. Anim. Sci. 67: 1855– 1863.
  • Nabuurs, M.J.A., Hoogendoorn, A., van der Molen, E.J., van Osta, A.L.M., 1993. Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Sci. 55, 78–84.
  • Pluske, J.R., Williams, I.H., Aherne, F.X., 1996a. Maintenance of villus height and crypt depth in piglets by providing continuous nutrition after weaning. J. Anim. Sci. 62: 131-144.
  • Makinde, M.O., Umapathy, E., Akingbemi, B.T., Mandisodza, K.T., Skadhauge, E., 1996. Effects of dietary soybean and cowpea on gut morphology and faecal composition in creep and noncreep-fed pigs. J. Am. Vet. Med. Assoc. 43: 75–85.
  • Pluske, J.R., Williams, I.H., Aherne, F.X., 1996b. Villus height and crypt depth in piglets in response to increases in the intake of cows’ milk after weaning. J. Anim. Sci. 62: 145–158.
  • Zijlstra, R., Whang, K.Y., Easter, R.A., Odle, J., 1996. Effect of feeding a milk replacer to early-weaned pigs on growth, body composition, and small intestinal morphology, compared with suckled littermates. J. Anim. Sci. 74: 2948–2959.
  • Jin, L., Reynolds, L.P., Redmer, D.A., Caton, J.S., Crenshaw, J.D., 1994. Effects of dietary fiber on intestinal growth, cell proliferation and morphology in growing pigs. J. Anim. Sci. 72: 2270–2278.
  • Redlich, J., Souffrant, W.B., Laplace, J.P., Hennig, U., Berg, R., Mouwen, JM., 1997. Morphometry of the small intestine in pigs with ileo-rectal anastomosis. Can. J. Vet. Res. 61: 21–27.
  • Brunsgaard, G., 1998. Weaning and the weaning diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short chain fatty acids in the large intestine and blood. J. Nutr. 128: 947-953.
  • Yasar, S., Forbes, J.M., 1999. Performance and gastro-intestinal response of broiler chickens fed on cereal grain-based feeds soaked in water. British Poultry Science 40: 65-76.
  • Gee, J.M., Lee-Finglas, W., Wortley, G.W., Johnson, I.T, 1995. Fermentable carbohydrates elevate plasma enteroglucagon but high viscosity is also necessary to stimulate small bowel mucosal cell proliferation in rats. J. Nutr. 126: 373–379.
  • Wiese, F., Simon, O., Weyrauch, K.D., 2003. Morphology of the Small Intestine of Weaned Piglets and a Novel Method for Morphometric Evaluation. Anat. Histol. Embryol. 32: 102-109. [37] Gürcü, B., Başımoğlu Koca, Y., Balcan, E., 2004. Histological structure of the skin of the Southern Crested Newt, Triturus karelinii (Salamandidae: Urodela). Zoology in the Middle East 31: 39-46.
  • Başımoğlu Koca, Y., Gürcü, B., Balcan, E., 2004. The Histological Investigation of Liver Tissues in Triturus karelinii and Triturus vulgaris (Salamandrdae, Urodela). Russian Journal of Herpetology 11(3): 223-229.
  • Karakahya, F., Başımoğlu Koca, Y. Mertensiella luschani’nin İnce Barsak Yapısı. XV. Ulusal Biyoloji Öğrenci Kongresi, Gaziantep Üniversitesi. 27-30 Ağustos 2008.
  • Bancroft, J.D., Cook, H.C., 1994. Manual of histological techniques and their diagnostic application. Churchill Livingstone, New York, p 457.
  • Aşar, M., Kocamaz, E., Demir, N., Üstünel, İ., Demir, R., 1995. Histological and morphometrical study on the changes of the fundic wall of rat stomach in prenatal period. Tr. J. Zool. 19: 285-290.
  • Yeomans, N.D., Trier, J.S., 1976. Epithelial cell proliferation and migration in the developing rat gastric mucosa. Dev. Biol. 53: 206-216.
  • Walker, V.F., Lien, K.F., 1994. Functional Anatomy of the Vertebrates: an evolutionary perspective. Saunders College Publishing, New York.
  • Smith D.M., Tabin CJ., 1999. BMP signaling species the pylorusic sphincter. Nature 402: 748-749. [45] Skoczeñ, S., 1966. Stomach contents of the mole, Talpa europaea L. 1758, from southern Poland. Acta Theriol. 11(28): 551-575.
  • Kozlowska, K., Wilczynska, B., Jaroszewska, M., 2004. Histomery of the alimentry canal wall of sexually immature males and females of Sorex araneus L. Zoologica Poloniae 49/1-4: 251-264. [47] Ruiz, M.C., Abad, M.J., González, B., Acosta, A., Michelangeli, F., 1993. Comparison of acid and pepsinogen secretion control by oxynticopeptic cell amphibians. Acta Cient. Venez. 44 (2): 89-94.
  • Caceci, T., Hrubec, T.C., 1990. Histology and ultrastructure of the gut in the black mollie (Poecillia spp.), a hybrid teleoset. J. Morphol. 204:265-280.
  • Gargiulo, A.M., Ceccarelli, P., DallAglio, C., Pedini, V., 1998. Histology and ultrastructure of the gut of the tilapia (Tilapia spp.), a hybrid teleoset. Anat. Histol. Embriyol. 27: 89-94.
  • Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder N.M., 2000. Evolutionary relationships between the amphibia, avian, and mammalian stomachs. Evolution and Development 2 (6): 348-359.
  • Mali, L.B., Bulog, B., 2004. Histology and ultrastructure of the gut epithelium of the Neotecnic Cave Salamander, Proteus anguinus (Amphibia, Caudata). J. Morph. 259: 82-89.
  • Smith, D.M., Tabin, C.J., 1999. BMP signaling specifies the pylorusic sphincter. Nature 402: 748-749.
  • Potten, C.S., 1998. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos. Trans. R. Soc. Lond. B. Biol. Sci.353: 821–830.
  • Gebczyñska, Z., Gebczyñski, M., 1971. Length and weight of the alimentary tract of Root of Vole. Acta Theriol. 16: 359-369.
  • Schieck, J.O., Millar, J.S., 1985. Alimentary tract measurements as indicators of diets of small mammals. Mammalia 49: 101-103.
There are 52 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Editorial
Authors

Yücel Koca

Feryal Karakahya This is me

Publication Date March 1, 2015
Published in Issue Year 2015 Volume: 36 Issue: 1

Cite

APA Koca, Y., & Karakahya, F. (2015). The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(1), 1-16.
AMA Koca Y, Karakahya F. The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. March 2015;36(1):1-16.
Chicago Koca, Yücel, and Feryal Karakahya. “The Structure of Stomach and Intestine of Triturus Karelinii (Strauch, 1870) and Mertensiella Luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36, no. 1 (March 2015): 1-16.
EndNote Koca Y, Karakahya F (March 1, 2015) The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36 1 1–16.
IEEE Y. Koca and F. Karakahya, “The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 36, no. 1, pp. 1–16, 2015.
ISNAD Koca, Yücel - Karakahya, Feryal. “The Structure of Stomach and Intestine of Triturus Karelinii (Strauch, 1870) and Mertensiella Luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36/1 (March 2015), 1-16.
JAMA Koca Y, Karakahya F. The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36:1–16.
MLA Koca, Yücel and Feryal Karakahya. “The Structure of Stomach and Intestine of Triturus Karelinii (Strauch, 1870) and Mertensiella Luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 36, no. 1, 2015, pp. 1-16.
Vancouver Koca Y, Karakahya F. The Structure of Stomach and Intestine of Triturus karelinii (Strauch, 1870) and Mertensiella luschani (Steindachner, 1891) (Amphibia: Urodela): Histological and Histometrical Study. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36(1):1-16.