BibTex RIS Cite
Year 2015, Volume: 36 Issue: 3, 664 - 671, 13.05.2015

Abstract

References

  • Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. (2010) Nanoparticulate material delivery to plants. Plant Science 179:154-163.
  • Butzen, S. (2011) Zinc Deficiencies and Fertilization in Corn Production. CROP INSIGHTS 20 1-4.
  • Sheykhbaglou, R., Sedghi, M., Tajbakhsh Shishevan, M. and Seyed Sharifi, R. (2010) Effects of Nano-Iron Oxide Particles on Agronomic Traits of Soybean. Nor. Sci. Bioil. 2:112- 113.
  • Aref, F. (2012) Manganese, iron and copper contents in leaves of maize plants (Zea mays L.) grown with different boron and zinc micronutrients. African Journal of Biotechnology 11:896-903.
  • Lin, D. and Xing, B. (2008) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution 150:243-250.
  • Meda, A.R., Scheuermann, E.B., Prechsl, U.E., Erenoglu, B., Schaaf, G., Hayen, H., Weber, G. and von Wiren, N. (2007) Iron Acquisition by Phytosiderophores Contributes to Cadmium
  • www.plantphysiol.org/cgi/doi/10.1104/pp.106.094474
  • Greiner, R. and Konietzny, U. (2006) Phytase for Food Application. Food Technol. Biotechnol. 44 125-140.
  • Hambidge, K.M., Huffer, J., Raboy, V., Grunwald, G.K., Westcott, J.L., Sian, L., Miller, L.V., Dorsch, J.A. and Krebs, N.F. (2004) Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids. Am J Clin Nutr 79:1053-9.
  • Harland, B.F. and Morris, E.R. (1995) Phytate: A good or a bad food component? Nutrition Research 15:733-754.
  • Aref, F.(2011) Concentration of zinc and boron in corn leaf as affected by zinc sulfate and boric acid fertilizers in a deficient soil. Life Science Journal 8:26−32.
  • Gee, G.W. and Bauder, J.W. (1986) Particle-size analysis, hydrometer method. Am.Soc. Agron., , Madison. WI, USA.
  • Walkley, A. (1947) A critical examination of a rapid method for determining organic carbon m soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63:251-263.
  • Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. (1954) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U. S. Department of Agriculture Circular No. 939. Banderis, A. D., D. H. Barter and K. Anderson. Agricultural and Advisor.
  • Bingham, F.T. (1982) Boron, Methods of Soil Analysis. Part 2. Chemical and microbiological properties. Agronomy Monograph ,. SSSA, Madison WI, USA.
  • Lopez, J.A., González, F., Bonilla, F.A., Zambrano, G. and Gómez, M.E. (2010) Synthesis And Characterization of Fe3O4 Magnetic Nanofluid. Revista Latinoamericana de Metalurgia y Materiales 30 60-66.
  • Chen, X., Zhu, X., Li, R., Yao, H., Lu, Z. and Yang, X. (2012) Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open Journal of Ecology 2:21-28. doi: 10.4236/oje.2012.21003
  • Becheri, A., Durr, M., Lo Nostro, P. and Baglioni, P. (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679-689. [18] AOAC (2000) Official Method of Analysis of the Association of official Analytical Chemists International, . Association of Official Analytical Chemists International., Maryland, USA.
  • Afify, A., El-Beltagi, H.S., Abd El-Salam, S.M. and Omran, A.A. (2011) Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties. PLoS ONE 6:1-7.
  • Barrientos, L., Scott, J.J. and Murthy, P.P.N. (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106:1489-1495.
  • Jog, S.P., Garchow, B.G., Mehta, B.D. and Murthy, P.P.N. (2005) Alkaline phytase from lily pollen: Investigation of biochemical properties. Archives of Biochemistry and Biophysics 440:133-140.
  • Singh B and Sedeh HG (1979) Characteristics of phytase and its relationship to acid phosphatase and certain minerals in triticale. Cereal Chem 56:267-272.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J Biol Chem 187:265-257. 143:1761-1773. doi:

Foliar application of nano-Fe3O4 induced Iron Content and Phytase Activity in corn seed Single Cross 704

Year 2015, Volume: 36 Issue: 3, 664 - 671, 13.05.2015

Abstract

Abstract. This study was conducted in an experimental field in a randomized complete block with three replications in Urmia, West-Azarbayjan province of Iran. Foliar application nano Fe3O4 was performed at 3 stages of corn growth, knee stage, vegetative growth and grain filling. Corn seeds after harvested, were soaked and then germinated and dried. Iron content and phytase activity were determined. The results of this study revealed that foliar application of nano Fe3O4 significantly induced iron concentration and the activity of phytase (P<0.01). The results of this study showed that nano iron oxide fertilizers enhances the quality of corn seeds by decreasing phytate content and increasing Iron concentrations.

References

  • Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y. and Kumar, D.S. (2010) Nanoparticulate material delivery to plants. Plant Science 179:154-163.
  • Butzen, S. (2011) Zinc Deficiencies and Fertilization in Corn Production. CROP INSIGHTS 20 1-4.
  • Sheykhbaglou, R., Sedghi, M., Tajbakhsh Shishevan, M. and Seyed Sharifi, R. (2010) Effects of Nano-Iron Oxide Particles on Agronomic Traits of Soybean. Nor. Sci. Bioil. 2:112- 113.
  • Aref, F. (2012) Manganese, iron and copper contents in leaves of maize plants (Zea mays L.) grown with different boron and zinc micronutrients. African Journal of Biotechnology 11:896-903.
  • Lin, D. and Xing, B. (2008) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution 150:243-250.
  • Meda, A.R., Scheuermann, E.B., Prechsl, U.E., Erenoglu, B., Schaaf, G., Hayen, H., Weber, G. and von Wiren, N. (2007) Iron Acquisition by Phytosiderophores Contributes to Cadmium
  • www.plantphysiol.org/cgi/doi/10.1104/pp.106.094474
  • Greiner, R. and Konietzny, U. (2006) Phytase for Food Application. Food Technol. Biotechnol. 44 125-140.
  • Hambidge, K.M., Huffer, J., Raboy, V., Grunwald, G.K., Westcott, J.L., Sian, L., Miller, L.V., Dorsch, J.A. and Krebs, N.F. (2004) Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids. Am J Clin Nutr 79:1053-9.
  • Harland, B.F. and Morris, E.R. (1995) Phytate: A good or a bad food component? Nutrition Research 15:733-754.
  • Aref, F.(2011) Concentration of zinc and boron in corn leaf as affected by zinc sulfate and boric acid fertilizers in a deficient soil. Life Science Journal 8:26−32.
  • Gee, G.W. and Bauder, J.W. (1986) Particle-size analysis, hydrometer method. Am.Soc. Agron., , Madison. WI, USA.
  • Walkley, A. (1947) A critical examination of a rapid method for determining organic carbon m soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63:251-263.
  • Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. (1954) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U. S. Department of Agriculture Circular No. 939. Banderis, A. D., D. H. Barter and K. Anderson. Agricultural and Advisor.
  • Bingham, F.T. (1982) Boron, Methods of Soil Analysis. Part 2. Chemical and microbiological properties. Agronomy Monograph ,. SSSA, Madison WI, USA.
  • Lopez, J.A., González, F., Bonilla, F.A., Zambrano, G. and Gómez, M.E. (2010) Synthesis And Characterization of Fe3O4 Magnetic Nanofluid. Revista Latinoamericana de Metalurgia y Materiales 30 60-66.
  • Chen, X., Zhu, X., Li, R., Yao, H., Lu, Z. and Yang, X. (2012) Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open Journal of Ecology 2:21-28. doi: 10.4236/oje.2012.21003
  • Becheri, A., Durr, M., Lo Nostro, P. and Baglioni, P. (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679-689. [18] AOAC (2000) Official Method of Analysis of the Association of official Analytical Chemists International, . Association of Official Analytical Chemists International., Maryland, USA.
  • Afify, A., El-Beltagi, H.S., Abd El-Salam, S.M. and Omran, A.A. (2011) Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties. PLoS ONE 6:1-7.
  • Barrientos, L., Scott, J.J. and Murthy, P.P.N. (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106:1489-1495.
  • Jog, S.P., Garchow, B.G., Mehta, B.D. and Murthy, P.P.N. (2005) Alkaline phytase from lily pollen: Investigation of biochemical properties. Archives of Biochemistry and Biophysics 440:133-140.
  • Singh B and Sedeh HG (1979) Characteristics of phytase and its relationship to acid phosphatase and certain minerals in triticale. Cereal Chem 56:267-272.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J Biol Chem 187:265-257. 143:1761-1773. doi:
There are 23 citations in total.

Details

Journal Section Special
Authors

P Rezapour-osalou

M Tajbakhsh, This is me

S Asri-rezaei This is me

A Hasanzadeh This is me

Publication Date May 13, 2015
Published in Issue Year 2015 Volume: 36 Issue: 3

Cite

APA Rezapour-osalou, P., Tajbakhsh, M., Asri-rezaei, S., Hasanzadeh, A. (2015). Foliar application of nano-Fe3O4 induced Iron Content and Phytase Activity in corn seed Single Cross 704. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 664-671.
AMA Rezapour-osalou P, Tajbakhsh, M, Asri-rezaei S, Hasanzadeh A. Foliar application of nano-Fe3O4 induced Iron Content and Phytase Activity in corn seed Single Cross 704. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. May 2015;36(3):664-671.
Chicago Rezapour-osalou, P, M Tajbakhsh, S Asri-rezaei, and A Hasanzadeh. “Foliar Application of Nano-Fe3O4 Induced Iron Content and Phytase Activity in Corn Seed Single Cross 704”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36, no. 3 (May 2015): 664-71.
EndNote Rezapour-osalou P, Tajbakhsh, M, Asri-rezaei S, Hasanzadeh A (May 1, 2015) Foliar application of nano-Fe3O4 induced Iron Content and Phytase Activity in corn seed Single Cross 704. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36 3 664–671.
IEEE P. Rezapour-osalou, M. Tajbakhsh, S. Asri-rezaei, and A. Hasanzadeh, “Foliar application of nano-Fe3O4 induced Iron Content and Phytase Activity in corn seed Single Cross 704”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 36, no. 3, pp. 664–671, 2015.
ISNAD Rezapour-osalou, P et al. “Foliar Application of Nano-Fe3O4 Induced Iron Content and Phytase Activity in Corn Seed Single Cross 704”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 36/3 (May 2015), 664-671.
JAMA Rezapour-osalou P, Tajbakhsh, M, Asri-rezaei S, Hasanzadeh A. Foliar application of nano-Fe3O4 induced Iron Content and Phytase Activity in corn seed Single Cross 704. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36:664–671.
MLA Rezapour-osalou, P et al. “Foliar Application of Nano-Fe3O4 Induced Iron Content and Phytase Activity in Corn Seed Single Cross 704”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 36, no. 3, 2015, pp. 664-71.
Vancouver Rezapour-osalou P, Tajbakhsh, M, Asri-rezaei S, Hasanzadeh A. Foliar application of nano-Fe3O4 induced Iron Content and Phytase Activity in corn seed Single Cross 704. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2015;36(3):664-71.