Research Article
BibTex RIS Cite

Year 2025, Volume: 4 Issue: 1, 15 - 26, 30.06.2025
https://doi.org/10.70395/cunas.1635202

Abstract

References

  • [1] Kaba, M.Y., Kalkan, O., Celen, A. (2022). The Investigation of Batteries and Thermal Management Systems Used in Electric Vehicles. https://doi.org/10.36306/konjes.945819
  • [2] Malik, M., Chan, K.H., Azimi, G. (2022). Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries. Materials Today Energy; 28. https://doi.org/10.1016/j.mtener.2022.101066
  • [3] Ramasubramanian, B., Sundarrajan, S., Chellappan, V., Reddy, M.V., Ramakrishna, S., Zaghib, K. (2022). Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries; 8(10): 133. https://doi.org/10.3390/batteries8100133
  • [4] Fehse, M., Ventosa, E. (2015). Is TiO2(B) the Future of Titanium-Based Battery Materials. ChemPlusChem; 80(5): 785–795. https://doi.org/10.1002/cplu.201500038
  • [5] Xia, X., Li, P. (2022). A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Science of the Total Environment; 814. https://doi.org/10.1016/j.scitotenv.2021.152870
  • [6] Martyushev, N.V., Malozyomov, B.V., Khalikov, I.H., Kukartsev, V.A., Kukartsev, V.V., Tynchenko, V.S., Tynchenko, Y.A., Qi, M. (2023). Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Con-sumption. Energies; 16(2): 729. https://doi.org/10.3390/en16020729
  • [7] Özcan, Ö.F., Karadağ, T., Altuğ, M., Özgüven, Ö.F. (2021). Elektrikli araçlarda kullanılan pil kimyasallarının özellikleri ve üstün yönlerinin kıyaslanması üzerine bir derleme çalışması. Gazi University Journal of Science Part A: Engineering and Innovation; 8(2): 276–298.
  • [8] Kaymaz, H., Korkmaz, H., Erdal, H. (2019). Development of a driving cycle for Istanbul bus rapid transit based on real-world data using stratified sampling method. Transportation Research Part D; 75: 123–135. https://doi.org/10.1016/j.trd.2019.08.023
  • [9] GIS, W., Kruczyński, S., Taubert, S., Wierzejski, A. (2017). Studies of energy use by electric buses in SORT tests. Combustion Engines; 170(3): 135–138. https://doi.org/10.19206/CE-2017-323
  • [10] Chen, X., Shen, W., Vo, T.T., Cao, Z., Kapoor, A. (2012). An overview of lithium-ion batteries for electric vehicles. 2012 IEEE International Power Engineering and Optimization Conference (PEOCO); 230–235. https://doi.org/10.1109/PEOCO.2012.6207027
  • [11] Nemry, F., Leduc, G., Muñoz, A. (2009). Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency. European Commission, Joint Research Centre, Institute for Prospective Technological Studies.
  • [12] Bhagat, S., Archana, C., Talele, V., Khade, K., Budukh, A., Bhosale, A., Mathew, V.K. (2022). Simulation of Li-ion battery using MATLAB-Simulink for charging and discharging. E3S Web of Conferences; 353: 03001. https://doi.org/10.1051/e3sconf/202235303001
  • [13] Ekici, Y.E., Tan, N. (2018). Farklı batarya tiplerinin şarj ve deşarj karakteristiklerinin hibrit araç modeli üzerinde incelenmesi. International Conference on Innovative Engineering Applications (CIEA 2018), Sivas, Turkey
  • [14] E-Mobitech (n.d.). Products. Retrieved from https://e-mobitech.com/en/products/
  • [15] Wang, R., Liu, G., Wang, C., Ji, Z., Yu, Q. (2024). A comparative study on mechanical-electrical-thermal characteristics and failure mechanism of LFP/NMC/LTO batteries under mechanical abuse. eTransportation; 22: 100359. https://doi.org/10.1016/j.etran.2024.100359.
  • [16] Al-Wreikat, Y., Serrano, C., Sodré, J.R. (2021). Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving. Applied Energy; 297: 117096. https://doi.org/10.1016/j.apenergy.2021.117096
  • [17] Yang, Y., Lan, L., Hao, Z., Zhao, J., Luo, G., Fu, P., Chen, Y. (2022). Life Cycle Prediction Assessment of Battery Electrical Vehicles with Special Focus on Different Lithium-Ion Power Batteries in China. Energies; 15(15): 5321. https://doi.org/10.3390/en15155321

Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC

Year 2025, Volume: 4 Issue: 1, 15 - 26, 30.06.2025
https://doi.org/10.70395/cunas.1635202

Abstract

Studies on energy efficiency and storage are being conducted both globally. Considering energy efficiency, safety, environmental impact, and total costs throughout the lifespan of electric vehicles, proper battery selection is crucial for reducing greenhouse gas emissions and optimizing energy resource usage. Parameters such as energy density, cycle life, charging time, thermal runaway risk, and cost play a significant role in determining the right battery type, particularly for public transportation vehicles. This study com-pares the parameters of LFP, LTO, and NMC batteries used in electric buses and examines their performances under identical usage scenarios and weights. To determine the most suitable battery chemistry for electric buses, a 10-year simulation was conduct-ed based on SORT-2 (Standardized On-Road Test Cycle) and the Istanbul Metrobus driving cycles, analyzing parameters such as energy density, cycle life, daily charging counts, energy consumption per kilometer, and energy consumption over a daily range of 400 km. Previous studies in the literature have emphasized the importance of selecting the appropriate battery type to enhance energy efficiency, especially in public transportation vehicles. Simulation results indicate that while LFP batteries offer long cycle life and low spatial requirements, they are disadvantageous in terms of energy density and fast charging/discharging. LTO batteries exhibit the highest cycle life and fastest charging/discharging capabilities, but their low energy density and high spatial requirements are notable drawbacks. NMC batteries provide high energy density and spatial advantages but suffer from low cycle life and ther-mal runaway risks

References

  • [1] Kaba, M.Y., Kalkan, O., Celen, A. (2022). The Investigation of Batteries and Thermal Management Systems Used in Electric Vehicles. https://doi.org/10.36306/konjes.945819
  • [2] Malik, M., Chan, K.H., Azimi, G. (2022). Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries. Materials Today Energy; 28. https://doi.org/10.1016/j.mtener.2022.101066
  • [3] Ramasubramanian, B., Sundarrajan, S., Chellappan, V., Reddy, M.V., Ramakrishna, S., Zaghib, K. (2022). Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries; 8(10): 133. https://doi.org/10.3390/batteries8100133
  • [4] Fehse, M., Ventosa, E. (2015). Is TiO2(B) the Future of Titanium-Based Battery Materials. ChemPlusChem; 80(5): 785–795. https://doi.org/10.1002/cplu.201500038
  • [5] Xia, X., Li, P. (2022). A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Science of the Total Environment; 814. https://doi.org/10.1016/j.scitotenv.2021.152870
  • [6] Martyushev, N.V., Malozyomov, B.V., Khalikov, I.H., Kukartsev, V.A., Kukartsev, V.V., Tynchenko, V.S., Tynchenko, Y.A., Qi, M. (2023). Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Con-sumption. Energies; 16(2): 729. https://doi.org/10.3390/en16020729
  • [7] Özcan, Ö.F., Karadağ, T., Altuğ, M., Özgüven, Ö.F. (2021). Elektrikli araçlarda kullanılan pil kimyasallarının özellikleri ve üstün yönlerinin kıyaslanması üzerine bir derleme çalışması. Gazi University Journal of Science Part A: Engineering and Innovation; 8(2): 276–298.
  • [8] Kaymaz, H., Korkmaz, H., Erdal, H. (2019). Development of a driving cycle for Istanbul bus rapid transit based on real-world data using stratified sampling method. Transportation Research Part D; 75: 123–135. https://doi.org/10.1016/j.trd.2019.08.023
  • [9] GIS, W., Kruczyński, S., Taubert, S., Wierzejski, A. (2017). Studies of energy use by electric buses in SORT tests. Combustion Engines; 170(3): 135–138. https://doi.org/10.19206/CE-2017-323
  • [10] Chen, X., Shen, W., Vo, T.T., Cao, Z., Kapoor, A. (2012). An overview of lithium-ion batteries for electric vehicles. 2012 IEEE International Power Engineering and Optimization Conference (PEOCO); 230–235. https://doi.org/10.1109/PEOCO.2012.6207027
  • [11] Nemry, F., Leduc, G., Muñoz, A. (2009). Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency. European Commission, Joint Research Centre, Institute for Prospective Technological Studies.
  • [12] Bhagat, S., Archana, C., Talele, V., Khade, K., Budukh, A., Bhosale, A., Mathew, V.K. (2022). Simulation of Li-ion battery using MATLAB-Simulink for charging and discharging. E3S Web of Conferences; 353: 03001. https://doi.org/10.1051/e3sconf/202235303001
  • [13] Ekici, Y.E., Tan, N. (2018). Farklı batarya tiplerinin şarj ve deşarj karakteristiklerinin hibrit araç modeli üzerinde incelenmesi. International Conference on Innovative Engineering Applications (CIEA 2018), Sivas, Turkey
  • [14] E-Mobitech (n.d.). Products. Retrieved from https://e-mobitech.com/en/products/
  • [15] Wang, R., Liu, G., Wang, C., Ji, Z., Yu, Q. (2024). A comparative study on mechanical-electrical-thermal characteristics and failure mechanism of LFP/NMC/LTO batteries under mechanical abuse. eTransportation; 22: 100359. https://doi.org/10.1016/j.etran.2024.100359.
  • [16] Al-Wreikat, Y., Serrano, C., Sodré, J.R. (2021). Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving. Applied Energy; 297: 117096. https://doi.org/10.1016/j.apenergy.2021.117096
  • [17] Yang, Y., Lan, L., Hao, Z., Zhao, J., Luo, G., Fu, P., Chen, Y. (2022). Life Cycle Prediction Assessment of Battery Electrical Vehicles with Special Focus on Different Lithium-Ion Power Batteries in China. Energies; 15(15): 5321. https://doi.org/10.3390/en15155321
There are 17 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage, Electrical Engineering (Other)
Journal Section Research Articles
Authors

Muhammed Kürşad Baştürk 0009-0007-2349-6028

Yunus Kizilarslan 0009-0000-5016-8643

Publication Date June 30, 2025
Submission Date February 7, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Baştürk, M. K., & Kizilarslan, Y. (2025). Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC. Cukurova University Journal of Natural and Applied Sciences, 4(1), 15-26. https://doi.org/10.70395/cunas.1635202
AMA Baştürk MK, Kizilarslan Y. Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC. CUNAS. June 2025;4(1):15-26. doi:10.70395/cunas.1635202
Chicago Baştürk, Muhammed Kürşad, and Yunus Kizilarslan. “Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC”. Cukurova University Journal of Natural and Applied Sciences 4, no. 1 (June 2025): 15-26. https://doi.org/10.70395/cunas.1635202.
EndNote Baştürk MK, Kizilarslan Y (June 1, 2025) Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC. Cukurova University Journal of Natural and Applied Sciences 4 1 15–26.
IEEE M. K. Baştürk and Y. Kizilarslan, “Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC”, CUNAS, vol. 4, no. 1, pp. 15–26, 2025, doi: 10.70395/cunas.1635202.
ISNAD Baştürk, Muhammed Kürşad - Kizilarslan, Yunus. “Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC”. Cukurova University Journal of Natural and Applied Sciences 4/1 (June2025), 15-26. https://doi.org/10.70395/cunas.1635202.
JAMA Baştürk MK, Kizilarslan Y. Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC. CUNAS. 2025;4:15–26.
MLA Baştürk, Muhammed Kürşad and Yunus Kizilarslan. “Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC”. Cukurova University Journal of Natural and Applied Sciences, vol. 4, no. 1, 2025, pp. 15-26, doi:10.70395/cunas.1635202.
Vancouver Baştürk MK, Kizilarslan Y. Performance Comparison of Battery Chemistries in Electric Buses Using Matlab Simulink Examples of LFP, LTO and NMC. CUNAS. 2025;4(1):15-26.