The liver is the energy store of mammals and its energy budget can change due to xenobiotic stress. There is no adequate information on the effects of nanoparticles (NPs) on the energy policy of mammals. Thus, this study was undertaken to investigate the accumulation of Al2O3, CuO and TiO2 NPs in the liver of female Wistar rats (Rattus norvegicus var. albinos) following oral administrations (0, 0.5, 5, 50 mg/kg b.w./day) for 14 days. Levels of total protein, lipid and glucose were measured to determine the energy reserves of the liver. ICP-MS (Inductively coupled plasma mass spectrometry) measurement showed that NPs accumulated in the liver, as the concentrations of Al, Cu and Ti increased sharply (P<0.05). Data showed that glucose levels decreased significantly (P<0.05) after NP exposures at all doses. Similarly, lipid levels also decreased (P>0.05) at the highest doses of Al2O3 and CuO exposures. However, total protein levels did not change (P>0.05) after any NP exposure. Likewise, the total energy reserves of the liver decreased (P<0.05) after the highest NP exposures. Interestingly, data indicated that the first energy sources (glucose and lipid) of the metabolism were decreased by all NPs, indicating possible metabolic stress.
[1]Goyer RA., (1991). Toxic effects of metals. In: Amdur, M.O., Doull, J. and Klaassen, C.D. (eds) Cassarett and Doulls Toxicology, The Basic Science of Poisons. Pergamon Press, 623-680.
[2]Mance G., (1987). Pollution Threat of Heavy Metals in Aquatic Environment. Elsevier, London, 363s.
[3]Ewers U HW, Schlipköter., (1991). Chronic toxicity of metals and metal compounds. In Metals and their compounds in the environment. VCH Publishers, Inc., NY, 591-603.
[4]Chavali MS, Nikolova MP., (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences, 1: 607-637.
[5]Bondarenko KJ, Ivask A, Kasemets K, Mortimer M, Kahru A., (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87: 1181-1200.
[6]Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS., (2014). Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37:336-347.
[7]Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Lead JR., (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825-1851.
[8]Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Henny M.L, Esther WV, Brandon FA, De Jong WH., (2014).Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicol 11: 30-37.
[9]Calow P., (1991). Physiological costs of combating chemical toxicants: Ecological implications. Comp Biochem Physiol C 100: 3-6.
[10]Canli M., (1996). Effects of mercury, chromium and nickel on glycogen reserves and protein levels in tissues of Cyprinus carpio. Tr J Zool 20(2): 161-168.
[11]Bossuyt BTA, Janssen CR., (2004). Influence of multigeneration acclimation to copper on tolerance, energy reserves and homeostasis of Daphnia magna. Environ Contam Toxicol 23: 2029-37.
[12]Canli M., (2005). Dietary and water-borne Zn exposures affect energy reserves and subsequent Zn tolerance of Daphnia magna. Comp Biochem Physiol Part C: Toxicol Pharm 141(1):110-116.
[13]He X, Qi Z, Hou H, Gao J, Zhang XX. (2020). Effects of chronic cadmium exposure at food limitation-relevant levels on energy metabolism in mice. J Hazard Mat 388: 121791.
[14]Eti, N. A., Flor, S., Iqbal, K., Scott, R. L., Klenov, V. E., Gibson-Corley, K. N., Robertson, L.W., (2021). PCB126 Induced Toxic Actions on Liver Energy Metabolism is Mediated by AhR in Rats. Toxicology, 153054.
[15]Emre I, Kayis T, Coskun M, Dursun O, Coun HY., (2013). Changes in antioxidative enzyme activity, glycogen, lipid, protein, and malondialdehyde content in cadmium-treated Galleria mellonella larvae. Annals Entomol Soc Am 106(3): 371-377.
[16]Plummer DT., (1971). An introduction of practical bio-chemistry, McGraw-Hill Book Companies, London,United Kingdom.
[17]Van Handel, E. (1985). Rapid determination of total lipids in mosquitoes." J Am Mosq Control Assoc. 3: 302-304.
[18]Lowry OH, Rosebrough N., Farra NJ, Randall RJ., (1951). Protein measurements with the folin phenol reagent. J Biol Chem 193: 265–275.
[19]Gnaiger E., (1983). Calculation of energy and biochemical equivalents of respiratory oxygen consumption. In: Gnaiger, E. and Forstner, H. (Eds), Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Springer Verlag, Berlin, pp. 337-345.
[20]Canli EG, Celenk A, Canli M., 2021. Accumulation and distribution of nanoparticles (Al2O3, CuO, TiO2) in tissues of freshwater mussel (Unio tigridis). Bull Environ Contam Toxicol. DOI: https://doi.org/10.1007/s00128-021-03410-5.
[21]Jeng HA, Swanson J., (2006). Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Heal A 41:2699-2711.
[22]Canli EG, Dogan A, Canli M., (2018). Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ Toxicol Phar 62: 181-187.
[23]Canli EG, Ila HB, Canli M., (2019). Responses of biomarkers belonging to different metabolic systems of rats following oral administration of aluminium nanoparticle. Environ Toxicol Pharm 69: 72-79.
[24]Swiatek ZM, Bednarska AJ., (2019). Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form. Environ Sci Pollut Res 26(24): 24933-24945.
[25]Yeung JW, Zhou GJ, Leung KM., (2016). Sub-lethal effects of cadmium and copper on RNA/DNA ratio and energy reserves in the green-lipped mussel Perna viridis. Ecotox Eviron Safety 132: 59-67.
[26]Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z., (2015). Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol 28(10): 2000-2009.
[27]Ferreira GK, Cardoso E, Vuolo FS, Michels M, Zanoni ET, Carvalho-Silva M, da Silva Paula MM (2015). Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats. Biochem Cell Biol 93(6): 548-557.
[28]Canli EG, Atli G, Canli M., (2017). Response of the antioxidant enzymes of the erythrocyte and alterations in the serum biomarkers in rats following oral administration of nanoparticles. Environ Toxicol Pharm 50: 145-150.
[29]Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Zhao Y., (2012). Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health Part A 47(4): 577-588.
[30]Chen Z, Wang Y, Wang X, Zhuo L, Chen S, Tang S, ,Zhao L, Jia G., (2018). Effect of titanium dioxide nanoparticles on glucose homeostasis after oral administration. J Applied Toxicology 38(6): 810-823.
[31]Canli EG, Ila HB, Canli M., (2019). Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al2O3, CuO, TiO2). Environ Sci Pollut Res 26(1): 938-945.
[1]Goyer RA., (1991). Toxic effects of metals. In: Amdur, M.O., Doull, J. and Klaassen, C.D. (eds) Cassarett and Doulls Toxicology, The Basic Science of Poisons. Pergamon Press, 623-680.
[2]Mance G., (1987). Pollution Threat of Heavy Metals in Aquatic Environment. Elsevier, London, 363s.
[3]Ewers U HW, Schlipköter., (1991). Chronic toxicity of metals and metal compounds. In Metals and their compounds in the environment. VCH Publishers, Inc., NY, 591-603.
[4]Chavali MS, Nikolova MP., (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences, 1: 607-637.
[5]Bondarenko KJ, Ivask A, Kasemets K, Mortimer M, Kahru A., (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87: 1181-1200.
[6]Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS., (2014). Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37:336-347.
[7]Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Lead JR., (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825-1851.
[8]Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Henny M.L, Esther WV, Brandon FA, De Jong WH., (2014).Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicol 11: 30-37.
[9]Calow P., (1991). Physiological costs of combating chemical toxicants: Ecological implications. Comp Biochem Physiol C 100: 3-6.
[10]Canli M., (1996). Effects of mercury, chromium and nickel on glycogen reserves and protein levels in tissues of Cyprinus carpio. Tr J Zool 20(2): 161-168.
[11]Bossuyt BTA, Janssen CR., (2004). Influence of multigeneration acclimation to copper on tolerance, energy reserves and homeostasis of Daphnia magna. Environ Contam Toxicol 23: 2029-37.
[12]Canli M., (2005). Dietary and water-borne Zn exposures affect energy reserves and subsequent Zn tolerance of Daphnia magna. Comp Biochem Physiol Part C: Toxicol Pharm 141(1):110-116.
[13]He X, Qi Z, Hou H, Gao J, Zhang XX. (2020). Effects of chronic cadmium exposure at food limitation-relevant levels on energy metabolism in mice. J Hazard Mat 388: 121791.
[14]Eti, N. A., Flor, S., Iqbal, K., Scott, R. L., Klenov, V. E., Gibson-Corley, K. N., Robertson, L.W., (2021). PCB126 Induced Toxic Actions on Liver Energy Metabolism is Mediated by AhR in Rats. Toxicology, 153054.
[15]Emre I, Kayis T, Coskun M, Dursun O, Coun HY., (2013). Changes in antioxidative enzyme activity, glycogen, lipid, protein, and malondialdehyde content in cadmium-treated Galleria mellonella larvae. Annals Entomol Soc Am 106(3): 371-377.
[16]Plummer DT., (1971). An introduction of practical bio-chemistry, McGraw-Hill Book Companies, London,United Kingdom.
[17]Van Handel, E. (1985). Rapid determination of total lipids in mosquitoes." J Am Mosq Control Assoc. 3: 302-304.
[18]Lowry OH, Rosebrough N., Farra NJ, Randall RJ., (1951). Protein measurements with the folin phenol reagent. J Biol Chem 193: 265–275.
[19]Gnaiger E., (1983). Calculation of energy and biochemical equivalents of respiratory oxygen consumption. In: Gnaiger, E. and Forstner, H. (Eds), Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Springer Verlag, Berlin, pp. 337-345.
[20]Canli EG, Celenk A, Canli M., 2021. Accumulation and distribution of nanoparticles (Al2O3, CuO, TiO2) in tissues of freshwater mussel (Unio tigridis). Bull Environ Contam Toxicol. DOI: https://doi.org/10.1007/s00128-021-03410-5.
[21]Jeng HA, Swanson J., (2006). Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Heal A 41:2699-2711.
[22]Canli EG, Dogan A, Canli M., (2018). Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ Toxicol Phar 62: 181-187.
[23]Canli EG, Ila HB, Canli M., (2019). Responses of biomarkers belonging to different metabolic systems of rats following oral administration of aluminium nanoparticle. Environ Toxicol Pharm 69: 72-79.
[24]Swiatek ZM, Bednarska AJ., (2019). Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form. Environ Sci Pollut Res 26(24): 24933-24945.
[25]Yeung JW, Zhou GJ, Leung KM., (2016). Sub-lethal effects of cadmium and copper on RNA/DNA ratio and energy reserves in the green-lipped mussel Perna viridis. Ecotox Eviron Safety 132: 59-67.
[26]Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z., (2015). Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol 28(10): 2000-2009.
[27]Ferreira GK, Cardoso E, Vuolo FS, Michels M, Zanoni ET, Carvalho-Silva M, da Silva Paula MM (2015). Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats. Biochem Cell Biol 93(6): 548-557.
[28]Canli EG, Atli G, Canli M., (2017). Response of the antioxidant enzymes of the erythrocyte and alterations in the serum biomarkers in rats following oral administration of nanoparticles. Environ Toxicol Pharm 50: 145-150.
[29]Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Zhao Y., (2012). Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health Part A 47(4): 577-588.
[30]Chen Z, Wang Y, Wang X, Zhuo L, Chen S, Tang S, ,Zhao L, Jia G., (2018). Effect of titanium dioxide nanoparticles on glucose homeostasis after oral administration. J Applied Toxicology 38(6): 810-823.
[31]Canli EG, Ila HB, Canli M., (2019). Response of the antioxidant enzymes of rats following oral administration of metal-oxide nanoparticles (Al2O3, CuO, TiO2). Environ Sci Pollut Res 26(1): 938-945.
Bayköse, A., Canlı, E. G., & Canlı, M. (2022). Investigations on the energy reserves of rat liver following oral exposures to nanoparticles. Cukurova University Journal of Natural and Applied Sciences, 1(2), 8-14.
AMA
Bayköse A, Canlı EG, Canlı M. Investigations on the energy reserves of rat liver following oral exposures to nanoparticles. CUNAS. June 2022;1(2):8-14.
Chicago
Bayköse, Ahmet, Esin Gülnaz Canlı, and Mustafa Canlı. “Investigations on the Energy Reserves of Rat Liver Following Oral Exposures to Nanoparticles”. Cukurova University Journal of Natural and Applied Sciences 1, no. 2 (June 2022): 8-14.
EndNote
Bayköse A, Canlı EG, Canlı M (June 1, 2022) Investigations on the energy reserves of rat liver following oral exposures to nanoparticles. Cukurova University Journal of Natural and Applied Sciences 1 2 8–14.
IEEE
A. Bayköse, E. G. Canlı, and M. Canlı, “Investigations on the energy reserves of rat liver following oral exposures to nanoparticles”, CUNAS, vol. 1, no. 2, pp. 8–14, 2022.
ISNAD
Bayköse, Ahmet et al. “Investigations on the Energy Reserves of Rat Liver Following Oral Exposures to Nanoparticles”. Cukurova University Journal of Natural and Applied Sciences 1/2 (June 2022), 8-14.
JAMA
Bayköse A, Canlı EG, Canlı M. Investigations on the energy reserves of rat liver following oral exposures to nanoparticles. CUNAS. 2022;1:8–14.
MLA
Bayköse, Ahmet et al. “Investigations on the Energy Reserves of Rat Liver Following Oral Exposures to Nanoparticles”. Cukurova University Journal of Natural and Applied Sciences, vol. 1, no. 2, 2022, pp. 8-14.
Vancouver
Bayköse A, Canlı EG, Canlı M. Investigations on the energy reserves of rat liver following oral exposures to nanoparticles. CUNAS. 2022;1(2):8-14.