Research Article
BibTex RIS Cite
Year 2024, Volume: 3 Issue: 1, 19 - 24

Abstract

References

  • [1] Wood, C.M., Farrel, A.P., Brauner, C.J. (2012a). Homeostasis and toxicology of essential metals. Fish. Physiology 31A. Academic Press,, London, p. 497.
  • [2] Wood, C.M., Farrel, A.P., Brauner, C.J. (2012b). Homeostasis and toxicology of non-essential metals. Fish. Physiology 31B. Academic Press, London, p. 507.
  • [3] Mance, G. (1987). Pollution threat of heavy metals in aquatic environment. Elsevier, London, 363 pp.
  • [4] Heath, A.G. (1995). Water Pollution and Fish Physiology, 2nd Edition. New York, NY, USA: CRC Press.
  • [5] Jorgensen, S.W. (2010). A derivative of encyclopedia of ecology. Ecotoxicology, London, Academic Press.
  • [6] Priya, K.K., Ramesh, M., Saravanan, M., Ponpandian, N. (2015). Ecological risk assessment of silicon dioxide nanoparti-cles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na+/K+ ATPase activity. Ecotoxicology and Envi-ronmental Safety 120, 295–302.
  • [7] Ruiz, P., Katsumiti, A., Nieto, J.A., Bori, J., Jimeno-Romero, A., Reip, P., Cajaraville, M.P. (2015). Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Marine Environmental Research 111, 107-120.
  • [8] Zhou, L., Li, M., Zhong, Z., Chen, H., Wang, X., Wang, M., Li, C. (2021). Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquatic Toxicology 236, 105845.
  • [9] Canli, E.G. (2022). Farklı Sürelerde Bakır Etkisinde Kalan Tatlısu Midyelerinde (Unio tigridis) Antioksidan Enzim Tepkilerinin Incelenmesi. Kahramanmaras Sütcü Imam Üniversitesi Tarim ve Doga Dergisi 25(1), 31-41.
  • [10] Uckun, A. A., Uckun, M. (2021). Evaluation of some biomarkers in carp (Cyprinus carpio linnaeus, 1758) depending on water and sediment pollution of Atatürk dam lake. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 744-753.
  • [11] Aytekin, T. (2022). Evaluation of the Effects of Nitrilotriacetic Acid as a Chelating Agent on the Biochemical Toxicity of Lead in Oreochromis niloticus. Biological Trace Element Research, 200(6), 2908-2914.
  • [12] Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochem. 37(2): 112-119.
  • [13] Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status Clinical Biochem. 38: 1103–1111.
  • [14] Cioni, C., Merich, D., Cataldi, E., Cataudella, S., (1991). Fine structure of chloride cells in freshwater‐and seawater‐adapted Oreochromis niloticus (Linnaeus) and Oreochromis mossambicus (Peters). Journal of Fish Biology 39(2), 197-209.
  • [15] Kamal, A. H. M. M., Mair, G. C., (2005). Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture 247, 189-201.
  • [16] Oner, M., Atli, G., and Canli, M. (2008). Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environmental Toxicology and Chemistry, 27: 360–366.
  • [17] Canli, E.G., Dogan, A., Canli, M., (2018). Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environmental Toxicology and Pharmacology 62, 181-187.
  • [18] Kanak, E.G., Dogan, Z., Eroglu, A., Atli, G., Canli, M., (2014). Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures. Fish Physiology and Biochemistry 40, 1083-1091.
  • [19] Atli, G., Yuzbasioglu Ariyurek, S., Kanak, E.G., and Canli, M. (2015). Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures. Environmental Toxicology and Pharma-cology, 40: 508–515.
  • [20] Gopi, N., Vijayakumar, S., Thaya, R., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Vaseeharan, B. (2019). Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. Journal of Trace Elements in Medicine and Biology 55, 170-179.
  • [21] Dogan A, Canli M (2019). Investigations on the osmoregulation system of freshwater fish (Oreochromis niloticus) ex-posed to mercury in differing salinities. Turkish Journal of Fisheries and Aquatic Sciences 19(12): 1061-1068.
  • [22] Mohamed, A. A. R., El-Houseiny, W., Abd Elhakeem, E. M., Ebraheim, L. L., Ahmed, A. I., Abd El-Hakim, Y. M. (2020). Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicology and Environmental Safety 188, 109890.
  • [23] Hossain, Z., Hossain, M. S., Ema, N. S., Omri, A. (2021). Heavy metal toxicity in Buriganga River alters the immunology of Nile tilapia (Oreochromis niloticus L). Heliyon 7(11), e08285.
  • [24] Karayakar, F., Yurt, Ö., Cicik, B., Canli, M. (2022). Accumulation and elimination of cadmium by the nile tilapia (Ore-ochromis niloticus) in differing temperatures and responses of oxidative stress biomarkers. Bulletin of Environmental Contami-nation and Toxicology 109 (6), 1126-1134.
  • [25] Canli, E. G., Canli, M. (2015). Low water conductivity increases the effects of copper on the serum parameters in fish (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 39(2), 606-613.
  • [26] Monserrat, J.M., Martinez, P.E., Geracitano, L.A., Amado, L.L., Martins, C.M.G., Pinho, G.L.L., Chaves, I.S., Ferreira-Cravo, M., Ventura-Lima, J. and Bianchini, A. (2007). Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comparative Biochemistry and Physiology, 146C: 221-234.
  • [27] Ezemonye, L.I.N. and Enuneku, A.A. (2011). Biochemical alretaions in Hoplobatrachus occipitalis exposed to sublethal concentrations of cadmium. Turkish Journal of Fisheries and Aquatic Sciences, 11: 485-489.
  • [28] Besirovic, H., Alic, A., Prasovic, S. and Drommer, W. (2010). Histopathological effects of chronic exposure to cadmium and zinc on kidneys and gills of brown trout (Salmo trutta m. fario). Turkish Journal of Fisheries and Aquatic Sciences, 10: 255-262. [29] McGeer, J.C., Szebedinszky, C., McDonald, D.G., and Wood, C.M. (2000). Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 50: 231–243.

Oxidative stress status of freshwater fish (Oreochromis niloticus) exposed to cadmium in differing calcium levels

Year 2024, Volume: 3 Issue: 1, 19 - 24

Abstract

Xenobiotic exposures can cause oxidative stressfull in fish and heavy metals are one of the most toxic xenobiotics present in the environment. Thus, freshwater fish (Oreochromis niloticus) were exposed to Cd in different calcium levels (30, 60 and 120 mg/L), resembling the waters with different hardness. Experiments were conducted in 2 different durations, named as acute (25 µM Cd, 3 days) and chronic (5 µM Cd, 30 days) and the serum of fish was used to measure the oxidative status. For this aim, total oxidant status (TOS) and total antioxidant status (TAS) were measured in the serum and associated oxidative stress indicator values (OSI) were calculated. Data showed that Cd exposures, at all calcium levels, did not cause any fish mortality or changes in feeding behaviour. Likewise, the oxidative stress parameters did not change significantly (p>0.05) among controls. However, the mean TOS valued between controls and Cd-exposed fish differed significantly (p<0.05), as there were increases in TOS values in fish. Similarly, the mean TAS values between controls and Cd-exposed fish also differed significantly (p<0.05), as there were decreases in TAS values. OSI values significantly increased in Cd-exposed fish, suggesting oxidative stress. Data showed that significant alterations in the measured parameters were seen more at the lower calcium levels, emfasizing the protective roles of calcium ions against the toxic effects of Cd.

References

  • [1] Wood, C.M., Farrel, A.P., Brauner, C.J. (2012a). Homeostasis and toxicology of essential metals. Fish. Physiology 31A. Academic Press,, London, p. 497.
  • [2] Wood, C.M., Farrel, A.P., Brauner, C.J. (2012b). Homeostasis and toxicology of non-essential metals. Fish. Physiology 31B. Academic Press, London, p. 507.
  • [3] Mance, G. (1987). Pollution threat of heavy metals in aquatic environment. Elsevier, London, 363 pp.
  • [4] Heath, A.G. (1995). Water Pollution and Fish Physiology, 2nd Edition. New York, NY, USA: CRC Press.
  • [5] Jorgensen, S.W. (2010). A derivative of encyclopedia of ecology. Ecotoxicology, London, Academic Press.
  • [6] Priya, K.K., Ramesh, M., Saravanan, M., Ponpandian, N. (2015). Ecological risk assessment of silicon dioxide nanoparti-cles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na+/K+ ATPase activity. Ecotoxicology and Envi-ronmental Safety 120, 295–302.
  • [7] Ruiz, P., Katsumiti, A., Nieto, J.A., Bori, J., Jimeno-Romero, A., Reip, P., Cajaraville, M.P. (2015). Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis. Marine Environmental Research 111, 107-120.
  • [8] Zhou, L., Li, M., Zhong, Z., Chen, H., Wang, X., Wang, M., Li, C. (2021). Biochemical and metabolic responses of the deep-sea mussel Bathymodiolus platifrons to cadmium and copper exposure. Aquatic Toxicology 236, 105845.
  • [9] Canli, E.G. (2022). Farklı Sürelerde Bakır Etkisinde Kalan Tatlısu Midyelerinde (Unio tigridis) Antioksidan Enzim Tepkilerinin Incelenmesi. Kahramanmaras Sütcü Imam Üniversitesi Tarim ve Doga Dergisi 25(1), 31-41.
  • [10] Uckun, A. A., Uckun, M. (2021). Evaluation of some biomarkers in carp (Cyprinus carpio linnaeus, 1758) depending on water and sediment pollution of Atatürk dam lake. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 744-753.
  • [11] Aytekin, T. (2022). Evaluation of the Effects of Nitrilotriacetic Acid as a Chelating Agent on the Biochemical Toxicity of Lead in Oreochromis niloticus. Biological Trace Element Research, 200(6), 2908-2914.
  • [12] Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochem. 37(2): 112-119.
  • [13] Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status Clinical Biochem. 38: 1103–1111.
  • [14] Cioni, C., Merich, D., Cataldi, E., Cataudella, S., (1991). Fine structure of chloride cells in freshwater‐and seawater‐adapted Oreochromis niloticus (Linnaeus) and Oreochromis mossambicus (Peters). Journal of Fish Biology 39(2), 197-209.
  • [15] Kamal, A. H. M. M., Mair, G. C., (2005). Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture 247, 189-201.
  • [16] Oner, M., Atli, G., and Canli, M. (2008). Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environmental Toxicology and Chemistry, 27: 360–366.
  • [17] Canli, E.G., Dogan, A., Canli, M., (2018). Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environmental Toxicology and Pharmacology 62, 181-187.
  • [18] Kanak, E.G., Dogan, Z., Eroglu, A., Atli, G., Canli, M., (2014). Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures. Fish Physiology and Biochemistry 40, 1083-1091.
  • [19] Atli, G., Yuzbasioglu Ariyurek, S., Kanak, E.G., and Canli, M. (2015). Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures. Environmental Toxicology and Pharma-cology, 40: 508–515.
  • [20] Gopi, N., Vijayakumar, S., Thaya, R., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Vaseeharan, B. (2019). Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. Journal of Trace Elements in Medicine and Biology 55, 170-179.
  • [21] Dogan A, Canli M (2019). Investigations on the osmoregulation system of freshwater fish (Oreochromis niloticus) ex-posed to mercury in differing salinities. Turkish Journal of Fisheries and Aquatic Sciences 19(12): 1061-1068.
  • [22] Mohamed, A. A. R., El-Houseiny, W., Abd Elhakeem, E. M., Ebraheim, L. L., Ahmed, A. I., Abd El-Hakim, Y. M. (2020). Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicology and Environmental Safety 188, 109890.
  • [23] Hossain, Z., Hossain, M. S., Ema, N. S., Omri, A. (2021). Heavy metal toxicity in Buriganga River alters the immunology of Nile tilapia (Oreochromis niloticus L). Heliyon 7(11), e08285.
  • [24] Karayakar, F., Yurt, Ö., Cicik, B., Canli, M. (2022). Accumulation and elimination of cadmium by the nile tilapia (Ore-ochromis niloticus) in differing temperatures and responses of oxidative stress biomarkers. Bulletin of Environmental Contami-nation and Toxicology 109 (6), 1126-1134.
  • [25] Canli, E. G., Canli, M. (2015). Low water conductivity increases the effects of copper on the serum parameters in fish (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 39(2), 606-613.
  • [26] Monserrat, J.M., Martinez, P.E., Geracitano, L.A., Amado, L.L., Martins, C.M.G., Pinho, G.L.L., Chaves, I.S., Ferreira-Cravo, M., Ventura-Lima, J. and Bianchini, A. (2007). Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comparative Biochemistry and Physiology, 146C: 221-234.
  • [27] Ezemonye, L.I.N. and Enuneku, A.A. (2011). Biochemical alretaions in Hoplobatrachus occipitalis exposed to sublethal concentrations of cadmium. Turkish Journal of Fisheries and Aquatic Sciences, 11: 485-489.
  • [28] Besirovic, H., Alic, A., Prasovic, S. and Drommer, W. (2010). Histopathological effects of chronic exposure to cadmium and zinc on kidneys and gills of brown trout (Salmo trutta m. fario). Turkish Journal of Fisheries and Aquatic Sciences, 10: 255-262. [29] McGeer, J.C., Szebedinszky, C., McDonald, D.G., and Wood, C.M. (2000). Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 50: 231–243.
There are 28 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Ecological Physiology
Journal Section Research Articles
Authors

Mustafa Canlı 0000-0002-7038-6186

Publication Date
Submission Date February 12, 2024
Acceptance Date April 1, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Canlı, M. (n.d.). Oxidative stress status of freshwater fish (Oreochromis niloticus) exposed to cadmium in differing calcium levels. Cukurova University Journal of Natural and Applied Sciences, 3(1), 19-24.
AMA Canlı M. Oxidative stress status of freshwater fish (Oreochromis niloticus) exposed to cadmium in differing calcium levels. Cukurova University Journal of Natural and Applied Sciences. 3(1):19-24.
Chicago Canlı, Mustafa. “Oxidative Stress Status of Freshwater Fish (Oreochromis Niloticus) Exposed to Cadmium in Differing Calcium Levels”. Cukurova University Journal of Natural and Applied Sciences 3, no. 1 n.d.: 19-24.
EndNote Canlı M Oxidative stress status of freshwater fish (Oreochromis niloticus) exposed to cadmium in differing calcium levels. Cukurova University Journal of Natural and Applied Sciences 3 1 19–24.
IEEE M. Canlı, “Oxidative stress status of freshwater fish (Oreochromis niloticus) exposed to cadmium in differing calcium levels”, Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 1, pp. 19–24.
ISNAD Canlı, Mustafa. “Oxidative Stress Status of Freshwater Fish (Oreochromis Niloticus) Exposed to Cadmium in Differing Calcium Levels”. Cukurova University Journal of Natural and Applied Sciences 3/1 (n.d.), 19-24.
JAMA Canlı M. Oxidative stress status of freshwater fish (Oreochromis niloticus) exposed to cadmium in differing calcium levels. Cukurova University Journal of Natural and Applied Sciences.;3:19–24.
MLA Canlı, Mustafa. “Oxidative Stress Status of Freshwater Fish (Oreochromis Niloticus) Exposed to Cadmium in Differing Calcium Levels”. Cukurova University Journal of Natural and Applied Sciences, vol. 3, no. 1, pp. 19-24.
Vancouver Canlı M. Oxidative stress status of freshwater fish (Oreochromis niloticus) exposed to cadmium in differing calcium levels. Cukurova University Journal of Natural and Applied Sciences. 3(1):19-24.