Review
BibTex RIS Cite
Year 2023, , 138 - 144, 25.12.2023
https://doi.org/10.38093/cupmap.1407895

Abstract

References

  • 1. Ahmed, I.A., Mikail, M.A., Zamakshshari, N.H., Mustafa, M.R., Hashim, N.M., Othman, R., (2022). Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi Journal of Biological Sciences, 29(8), 103363. https://doi.org/10.1016/j.sjbs.2022.103363
  • 2. Antignac, E., Nohynek, G.J., Re, T., Clouzeau, J., Toutain, H. (2011). Safety of botanical ingredients in personal care products/cosmetics. Food and Chemical Toxicology, 49(2), 324-341. https://doi.org/10.1016/j.fct.2010.11.022
  • 3. Avonto, C., Chittiboyina, A.G., Sadrieh, N., Vukmanovic, S., Khan, I.A. (2018). In chemico skin sensitization risk assessment of botanical ingredients. Journal of Applied Toxicology, 8(7), 1047-1053. https://doi.org/10.1002/jat.3614
  • 4. Aziz, Z.A.A., Mohd-Nasir, H., Ahmad, A., Setapar, S.H.M., Peng, W.L., et al. (2019). Role of nanotechnology for design and development of cosmeceutical: application in makeup and skin care. Frontiers in Chemistry, 7, 739. https://doi.org/10.3389/fchem.2019.00739
  • 5. Bai, D., Hu, F., Xu, H., Huang, J., Wu, C., et al. (2023). High stability and low irritation of retinol propionate and hydroxypinacolone retinoate supramolecular nanoparticles with effective anti-wrinkle efficacy. Pharmaceutics, 15(3), 731. https://doi.org/10.3390/pharmaceutics15030731
  • 6. Basudkar, V., Gharat, S.A., Momin, M.M., Shringarpure, M. (2022). A review of anti-aging nanoformulations: recent developments in excipients for nanocosmeceuticals and regulatory guidelines. Critical Reviews in Therapeutic Drug Carrier Systems, 39(3), 45-97. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021039544
  • 7. Baumann, L. (2007). Botanical ingredients in cosmeceuticals. Journal of Drugs in Dermatology, 6(11), 1084-1088 (doi not available). 8. Bellu, E., Medici, S., Coradduzza, D., Cruciani, S., Amler, E., (2021). Nanomaterials in skin regeneration and rejuvenation. International Journal of Molecular Sciences, 22(13), 7095. https://doi.org/10.3390/ijms22137095
  • 9. Bucci, P., Prieto, M.J., Milla, L., Calienni, M.N., Martinez, L., et al. (2018). Skin penetration and UV-damage prevention by nanoberries. Journal of Cosmetic Dermatology, 17(5), 889-899. https://doi.org/10.1111/jocd.12436
  • 10. Capasso Palmiero, U., Ilare, J., Romani, C., Moscatelli, D., Sponchioni, M. (2020). Surfactant-free and rinsing-resistant biodegradable nanoparticles with high adsorption on natural fibers for the long-lasting release of fragrances. Colloids and Surfaces B: Biointerfaces, 190, 110926. https://doi.org/10.1016/j.colsurfb.2020.110926
  • 11. Cardoso, A.M., de Oliveira, E.G., Coradini, K., Bruinsmann, F.A., Aguirre, T., et al. (2019). Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: skin permeation/penetration and efficacy in wound healing. Material Science and Engineering C, 96, 205-217. https://doi.org/10.1016/j.msec.2018.11.013
  • 12. Cheng, Y.C., Li, T.S., Su, H.L., Lee, P.C., Wang, H.D. (2020). Transdermal delivery systems of natural products applied to skin therapy and care. Molecules, 25(21), 5051. https://doi.org/10.3390/molecules25215051
  • 13. Di Stefano, A. (2023). Nanotechnology in targeted drug delivery. International Journal of Molecular Sciences, 24(9), 8194. https://doi.org/110.3390/ijms24098194
  • 14. Dréno, B., Alexis, A., Chuberre, B., Marinovich, M. (2019). Safety of titanium dioxide nanoparticles in cosmetics. Journal of European Academy of Dermatology and Venereology, 33(Suppl 7), 34-46. https://doi.org/10.1111/jdv.15943
  • 15. Dubey, S.K., Dey, A., Singhvi, G., Pandey, M.M., Singh, V., et al. (2022). Emerging trends of nanotechnology in advanced cosmetics. Colloids and Surfaces B: Biointerfaces, 214, 112440. https://doi.org/10.1016/j.colsurfb.2022.112440
  • 16. Fakhravar, Z., Ebrahimnejad, P., Daraee, H., Akbarzadeh, A. (2016). Nanoliposomes: synthesis methods and applications in cosmetics. Journal of Cosmetic and Laser Therapy, 18(3), 174-181. https://doi.org/10.3109/14764172.2015.1039040
  • 17. Ferreira, M.S., Magalhães, M.C., Oliveira, R., Sousa-Lobo, J.M., Almeida, I.F. (2021). Trends in the use of botanicals in anti-aging cosmetics. Molecules, 26(12), 3584. https://doi.org/10.3390/molecules26123584
  • 18. Flores, F.C., Rosso, R.S., Cruz, L., Beck, R.C., Silva, C.B. (2017). An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment. European Journal of Pharmaceutical Sciences, 100, 56-63. https://doi.org/110.1016/j.ejps.2016.12.043.
  • 19. Goyal, A., Sharma, A., Kaur, J., Kumari, S., Garg, M., et al. (2022). Bioactive-based cosmeceuticals: an update on emerging trends. Molecules, 27(3), 828. https://doi.org/10.3390/molecules27030828
  • 20. Gupta, V., Mohapatra, S., Mishra, H., Farooq, U., Kumar, K., et al. (2022). Nanotechnology in cosmetics and cosmeceuticals-a review of latest advancements. Gels, 8(3), 173. https://doi.org/10.3390/gels8030173
  • 21. Heng, B.C., Zhao, X., Tan, E.C., Khamis, N., Assodani, A., et al. (2011). Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Archives in Toxicology, 85(12), 1517-1528. https://doi.org/10.1007/s00204-011-0722-1
  • 22. Hu, J., Zhang, J., Li, L., Bao, X., Deng, W., et al. (2021). Chitosan-coated organosilica nanoparticles as a dual responsive delivery system of natural fragrance for axillary odor problem. Carbohydrate Polymers, 269, 118277. https://doi.org/10.1016/j.carbpol.2021.118277
  • 23. Jin, S., Wang, Y., Wu, X., Li, Z., Zhu, L., et al. (2023). Young exosome bio-nanoparticles restore aging-ımpaired tendon stem/progenitor cell function and reparative capacity. Advanced Materials, 35(18), e2211602. https://doi.org/10.1002/adma.202211602
  • 24. Kanlayavattanakul, M. and Lourith, N., (2018). Skin hyperpigmentation treatment using herbs: a review of clinical evidences. Journal of Cosmetic and Laser Therapy, 20(2), 123-131. https://doi.org/10.1080/14764172.2017.1368666
  • 25. Lianza, M., Mandrone, M., Chiocchio, I., Tomasi, P., Marincich, L., et al. (2020). Screening of ninety herbal products of commercial interest as potential ingredients for phytocosmetics. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1287-1291. https://doi.org/10.1080/14756366.2020.1774571
  • 26. Lin, C.H., Lin, M.H., Chung, Y.K., Alalaiwe, A., Hung, C.F., et al. (2024). Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. Chemosphere, 347, 140702. https://doi.org/10.1016/j.chemosphere.2023.140702
  • 27. Marchiori, M.C.L., Rigon, C., Camponogara, C., Oliveira, S.M., Cruz, L. (2017). Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice. Journal of Photochemistry and Photobiology B, 170, 25-32. https://doi.org/10.1016/j.jphotobiol.2017.03.015
  • 28. Mohammad, I.S., Naveed, M., Ijaz, S., Shumzaid, M., Hassan, S., et al. (2018). Phytocosmeceutical formulation development, characterization and its in-vivo investigations. Biomedicine & Pharmacotherapy, 107, 806-817. https://doi.org/10.1016/j.biopha.2018.08.024
  • 29. Ngan, C.L., Basri, M., Tripathy, M., Abedi Karjiban, R., Abdul-Malek, E. (2015). Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. European Journal of Pharmaceutical Sciences, 70, 22-28. https://doi.org/10.1016/j.ejps.2015.01.006
  • 30. Nowak, K., Jabłońska, E., Ratajczak-Wrona, W. (2021). Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. Environmental Research, 198, 110488. https://doi.org/10.1016/j.envres.2020.110488
  • 31. Papageorgiou, S., Varvaresou, A., Tsirivas, E., Demetzos, C. (2010). New alternatives to cosmetics preservation. Journal of Cosmetic Sciences, 61(2), 107-123.
  • 32. Patil, S., Vhora, I., Amrutiya, J., Lalani, R., Misra, A. (2015). Role of nanotechnology in delivery of protein and peptide drugs. Current Pharmaceutical Design, 21(29), 4155-73. https://doi.org/10.2174/1381612821666150901095722.
  • 33. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
  • 34. Rama, B., Ribeiro, A.J. (2023). Role of nanotechnology in the prolonged release of drugs by the subcutaneous route. Expert Opinion in Drug Delivery, 20(5), 559-577. https://doi.org/10.1080/17425247.2023.2214362
  • 35. Raszewska-Famielec, M. and Flieger, J. (2022). Nanoparticles for topical application in the treatment of skin dysfunctions-an overview of dermo-cosmetic and dermatological products. International Journal of Molecular Sciences, 23(24), 15980. https://doi.org/10.3390/ijms232415980
  • 36. Rybczyńska-Tkaczyk, K., Grenda, A., Jakubczyk, A., Kiersnowska, K., Bik- Małodzińska, M. (2023). Natural compounds with antimicrobial properties in cosmetics. Pathogens, 12(2), 320. https://www.mdpi.com/2076-0817/12/2/320
  • 37. Santos, A.C., Morais, F., Simões, A., Pereira, I., Sequeira, J.A.D., et al. (2019). Nanotechnology for the development of new cosmetic formulations. Expert Opinion in Drug Delivery, 16(4), 313-330. https://doi.org/10.1080/17425247.2019.1585426
  • 38. Segueni, N., Akkal, S., Benlabed, K., Nieto, G. (2022). Potential use of propolis in phytocosmetic as phytotherapeutic constituent. Molecules, 27(18), 5833. https://doi.org/10.3390/molecules27185833
  • 39. Serra, M., Casas, A., Teixeira, J.A., Barros, A.N. (2023). Revealing the beauty potential of grape stems: harnessing phenolic compounds for cosmetics. International Journal of Molecular Sciences, 24(14), 11751. https://doi.org/10.3390/ijms241411751.
  • 40. Shokri, J. (2017). Nanocosmetics: benefits and risks. Bioimpacts, 7(4), 207-208. https://doi.org/10.15171/bi.2017.24
  • 41. Trombino, S., Mellace, S., Cassano, R. (2016). Solid lipid nanoparticles for antifungal drugs delivery for topical applications. Therapeutic Delivery, 7(9), 639-647. https://doi.org/10.4155/tde-2016-0040.
  • 42. Vaishampayan, P. and Rane, M.M. (2022). Herbal nanocosmecuticals: a review on cosmeceutical innovation. Journal of Cosmetic Dermatology, 21(11), 5464-5483. https://doi.org/10.1111/jocd.15238
  • 43. Wang, W., Qiu, X., Dong, Q., Wang, J., Hao, Q., et al. (2022). Nanocapsule-based reactive nano-fragrances with slow-release and antibacterial performances for applications of commodities. Journal of Biomedical Nanotechnology, 18(4), 1138-1145. https://doi.org/10.1166/jbn.2022.3329
  • 44. Zhang, L., Yao, L., Zhao, F., Yu, A., Zhou, Y., et al. (2023). Protein and peptide-based nanotechnology for enhancing stability, bioactivity, and delivery of anthocyanins. Advance Healthcare Materials, 12(25), e2300473. https://doi.org/10.1002/adhm.202300473
  • 45. Zouboulis, C.C., Ganceviciene, R., Liakou, A.I., Theodoridis, A., Elewa, R., et al. (2019). Aesthetic aspects of skin aging, prevention, and local treatment. Clinical Dermatology, 37(4), 365-372. https://doi.org/10.1016/j.clindermatol.2019.04.002.

Imperative Role of Natural Product Chemistry in Cosmeceutical R&D - Phytonanocosmeceuticals

Year 2023, , 138 - 144, 25.12.2023
https://doi.org/10.38093/cupmap.1407895

Abstract

Natural product chemistry has always been attractive for drug and cosmetic industries as natural products can address these industries very well. By consumer demand, the cosmetic industry is looking for innovative, safer, more effective, and environmentally friendly products. In this sense, a relatively new concept of cosmetics has emerged under “cosmeceuticals or dermocosmetics/medcosmetics”. Cosmeceuticals are briefly defined as a subclass of cosmetics that contain drug active substances or bioactive natural products with enhanced efficacy for therapeutic or cosmetic purposes. They are also described as a combination of cosmetics and pharmaceutics or medical-grade cosmetics, which particularly enhance skin penetration and the restorative effect of active ingredients in cosmetic formulations. On the other hand, nanotechnology has become another exciting area in cosmetics as nanoformulations enhance skin penetration. Therefore, we have been working on research and development of novel phyto-based cosmeceuticals via extensive screening studies on plant extracts and pure natural substances using in vitro (enzyme inhibition, etc), in silico (molecular docking and toxicity screening), and cell-based assays. In this regard, an anti-acne formulation based on a number of plant extracts tested against Propionibacterium acnes has been developed by our group. Besides, an antimicrobial formulation as an oral spray for mouth defense is currently a commercial product. We have been studying nanofiber formulations loaded with plant extract for wound healing. All our ongoing studies on discovering novel active natural ingredients for cosmeceutical purposes have so far yielded three patents and four patent applications and commercialized a final product. In the present mini review, examples and details of our group’s recent findings on phyto-based cosmeceuticals and nanoformulations will be underlined.

References

  • 1. Ahmed, I.A., Mikail, M.A., Zamakshshari, N.H., Mustafa, M.R., Hashim, N.M., Othman, R., (2022). Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi Journal of Biological Sciences, 29(8), 103363. https://doi.org/10.1016/j.sjbs.2022.103363
  • 2. Antignac, E., Nohynek, G.J., Re, T., Clouzeau, J., Toutain, H. (2011). Safety of botanical ingredients in personal care products/cosmetics. Food and Chemical Toxicology, 49(2), 324-341. https://doi.org/10.1016/j.fct.2010.11.022
  • 3. Avonto, C., Chittiboyina, A.G., Sadrieh, N., Vukmanovic, S., Khan, I.A. (2018). In chemico skin sensitization risk assessment of botanical ingredients. Journal of Applied Toxicology, 8(7), 1047-1053. https://doi.org/10.1002/jat.3614
  • 4. Aziz, Z.A.A., Mohd-Nasir, H., Ahmad, A., Setapar, S.H.M., Peng, W.L., et al. (2019). Role of nanotechnology for design and development of cosmeceutical: application in makeup and skin care. Frontiers in Chemistry, 7, 739. https://doi.org/10.3389/fchem.2019.00739
  • 5. Bai, D., Hu, F., Xu, H., Huang, J., Wu, C., et al. (2023). High stability and low irritation of retinol propionate and hydroxypinacolone retinoate supramolecular nanoparticles with effective anti-wrinkle efficacy. Pharmaceutics, 15(3), 731. https://doi.org/10.3390/pharmaceutics15030731
  • 6. Basudkar, V., Gharat, S.A., Momin, M.M., Shringarpure, M. (2022). A review of anti-aging nanoformulations: recent developments in excipients for nanocosmeceuticals and regulatory guidelines. Critical Reviews in Therapeutic Drug Carrier Systems, 39(3), 45-97. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2021039544
  • 7. Baumann, L. (2007). Botanical ingredients in cosmeceuticals. Journal of Drugs in Dermatology, 6(11), 1084-1088 (doi not available). 8. Bellu, E., Medici, S., Coradduzza, D., Cruciani, S., Amler, E., (2021). Nanomaterials in skin regeneration and rejuvenation. International Journal of Molecular Sciences, 22(13), 7095. https://doi.org/10.3390/ijms22137095
  • 9. Bucci, P., Prieto, M.J., Milla, L., Calienni, M.N., Martinez, L., et al. (2018). Skin penetration and UV-damage prevention by nanoberries. Journal of Cosmetic Dermatology, 17(5), 889-899. https://doi.org/10.1111/jocd.12436
  • 10. Capasso Palmiero, U., Ilare, J., Romani, C., Moscatelli, D., Sponchioni, M. (2020). Surfactant-free and rinsing-resistant biodegradable nanoparticles with high adsorption on natural fibers for the long-lasting release of fragrances. Colloids and Surfaces B: Biointerfaces, 190, 110926. https://doi.org/10.1016/j.colsurfb.2020.110926
  • 11. Cardoso, A.M., de Oliveira, E.G., Coradini, K., Bruinsmann, F.A., Aguirre, T., et al. (2019). Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: skin permeation/penetration and efficacy in wound healing. Material Science and Engineering C, 96, 205-217. https://doi.org/10.1016/j.msec.2018.11.013
  • 12. Cheng, Y.C., Li, T.S., Su, H.L., Lee, P.C., Wang, H.D. (2020). Transdermal delivery systems of natural products applied to skin therapy and care. Molecules, 25(21), 5051. https://doi.org/10.3390/molecules25215051
  • 13. Di Stefano, A. (2023). Nanotechnology in targeted drug delivery. International Journal of Molecular Sciences, 24(9), 8194. https://doi.org/110.3390/ijms24098194
  • 14. Dréno, B., Alexis, A., Chuberre, B., Marinovich, M. (2019). Safety of titanium dioxide nanoparticles in cosmetics. Journal of European Academy of Dermatology and Venereology, 33(Suppl 7), 34-46. https://doi.org/10.1111/jdv.15943
  • 15. Dubey, S.K., Dey, A., Singhvi, G., Pandey, M.M., Singh, V., et al. (2022). Emerging trends of nanotechnology in advanced cosmetics. Colloids and Surfaces B: Biointerfaces, 214, 112440. https://doi.org/10.1016/j.colsurfb.2022.112440
  • 16. Fakhravar, Z., Ebrahimnejad, P., Daraee, H., Akbarzadeh, A. (2016). Nanoliposomes: synthesis methods and applications in cosmetics. Journal of Cosmetic and Laser Therapy, 18(3), 174-181. https://doi.org/10.3109/14764172.2015.1039040
  • 17. Ferreira, M.S., Magalhães, M.C., Oliveira, R., Sousa-Lobo, J.M., Almeida, I.F. (2021). Trends in the use of botanicals in anti-aging cosmetics. Molecules, 26(12), 3584. https://doi.org/10.3390/molecules26123584
  • 18. Flores, F.C., Rosso, R.S., Cruz, L., Beck, R.C., Silva, C.B. (2017). An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment. European Journal of Pharmaceutical Sciences, 100, 56-63. https://doi.org/110.1016/j.ejps.2016.12.043.
  • 19. Goyal, A., Sharma, A., Kaur, J., Kumari, S., Garg, M., et al. (2022). Bioactive-based cosmeceuticals: an update on emerging trends. Molecules, 27(3), 828. https://doi.org/10.3390/molecules27030828
  • 20. Gupta, V., Mohapatra, S., Mishra, H., Farooq, U., Kumar, K., et al. (2022). Nanotechnology in cosmetics and cosmeceuticals-a review of latest advancements. Gels, 8(3), 173. https://doi.org/10.3390/gels8030173
  • 21. Heng, B.C., Zhao, X., Tan, E.C., Khamis, N., Assodani, A., et al. (2011). Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Archives in Toxicology, 85(12), 1517-1528. https://doi.org/10.1007/s00204-011-0722-1
  • 22. Hu, J., Zhang, J., Li, L., Bao, X., Deng, W., et al. (2021). Chitosan-coated organosilica nanoparticles as a dual responsive delivery system of natural fragrance for axillary odor problem. Carbohydrate Polymers, 269, 118277. https://doi.org/10.1016/j.carbpol.2021.118277
  • 23. Jin, S., Wang, Y., Wu, X., Li, Z., Zhu, L., et al. (2023). Young exosome bio-nanoparticles restore aging-ımpaired tendon stem/progenitor cell function and reparative capacity. Advanced Materials, 35(18), e2211602. https://doi.org/10.1002/adma.202211602
  • 24. Kanlayavattanakul, M. and Lourith, N., (2018). Skin hyperpigmentation treatment using herbs: a review of clinical evidences. Journal of Cosmetic and Laser Therapy, 20(2), 123-131. https://doi.org/10.1080/14764172.2017.1368666
  • 25. Lianza, M., Mandrone, M., Chiocchio, I., Tomasi, P., Marincich, L., et al. (2020). Screening of ninety herbal products of commercial interest as potential ingredients for phytocosmetics. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1287-1291. https://doi.org/10.1080/14756366.2020.1774571
  • 26. Lin, C.H., Lin, M.H., Chung, Y.K., Alalaiwe, A., Hung, C.F., et al. (2024). Exploring the potential of the nano-based sunscreens and antioxidants for preventing and treating skin photoaging. Chemosphere, 347, 140702. https://doi.org/10.1016/j.chemosphere.2023.140702
  • 27. Marchiori, M.C.L., Rigon, C., Camponogara, C., Oliveira, S.M., Cruz, L. (2017). Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice. Journal of Photochemistry and Photobiology B, 170, 25-32. https://doi.org/10.1016/j.jphotobiol.2017.03.015
  • 28. Mohammad, I.S., Naveed, M., Ijaz, S., Shumzaid, M., Hassan, S., et al. (2018). Phytocosmeceutical formulation development, characterization and its in-vivo investigations. Biomedicine & Pharmacotherapy, 107, 806-817. https://doi.org/10.1016/j.biopha.2018.08.024
  • 29. Ngan, C.L., Basri, M., Tripathy, M., Abedi Karjiban, R., Abdul-Malek, E. (2015). Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. European Journal of Pharmaceutical Sciences, 70, 22-28. https://doi.org/10.1016/j.ejps.2015.01.006
  • 30. Nowak, K., Jabłońska, E., Ratajczak-Wrona, W. (2021). Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. Environmental Research, 198, 110488. https://doi.org/10.1016/j.envres.2020.110488
  • 31. Papageorgiou, S., Varvaresou, A., Tsirivas, E., Demetzos, C. (2010). New alternatives to cosmetics preservation. Journal of Cosmetic Sciences, 61(2), 107-123.
  • 32. Patil, S., Vhora, I., Amrutiya, J., Lalani, R., Misra, A. (2015). Role of nanotechnology in delivery of protein and peptide drugs. Current Pharmaceutical Design, 21(29), 4155-73. https://doi.org/10.2174/1381612821666150901095722.
  • 33. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
  • 34. Rama, B., Ribeiro, A.J. (2023). Role of nanotechnology in the prolonged release of drugs by the subcutaneous route. Expert Opinion in Drug Delivery, 20(5), 559-577. https://doi.org/10.1080/17425247.2023.2214362
  • 35. Raszewska-Famielec, M. and Flieger, J. (2022). Nanoparticles for topical application in the treatment of skin dysfunctions-an overview of dermo-cosmetic and dermatological products. International Journal of Molecular Sciences, 23(24), 15980. https://doi.org/10.3390/ijms232415980
  • 36. Rybczyńska-Tkaczyk, K., Grenda, A., Jakubczyk, A., Kiersnowska, K., Bik- Małodzińska, M. (2023). Natural compounds with antimicrobial properties in cosmetics. Pathogens, 12(2), 320. https://www.mdpi.com/2076-0817/12/2/320
  • 37. Santos, A.C., Morais, F., Simões, A., Pereira, I., Sequeira, J.A.D., et al. (2019). Nanotechnology for the development of new cosmetic formulations. Expert Opinion in Drug Delivery, 16(4), 313-330. https://doi.org/10.1080/17425247.2019.1585426
  • 38. Segueni, N., Akkal, S., Benlabed, K., Nieto, G. (2022). Potential use of propolis in phytocosmetic as phytotherapeutic constituent. Molecules, 27(18), 5833. https://doi.org/10.3390/molecules27185833
  • 39. Serra, M., Casas, A., Teixeira, J.A., Barros, A.N. (2023). Revealing the beauty potential of grape stems: harnessing phenolic compounds for cosmetics. International Journal of Molecular Sciences, 24(14), 11751. https://doi.org/10.3390/ijms241411751.
  • 40. Shokri, J. (2017). Nanocosmetics: benefits and risks. Bioimpacts, 7(4), 207-208. https://doi.org/10.15171/bi.2017.24
  • 41. Trombino, S., Mellace, S., Cassano, R. (2016). Solid lipid nanoparticles for antifungal drugs delivery for topical applications. Therapeutic Delivery, 7(9), 639-647. https://doi.org/10.4155/tde-2016-0040.
  • 42. Vaishampayan, P. and Rane, M.M. (2022). Herbal nanocosmecuticals: a review on cosmeceutical innovation. Journal of Cosmetic Dermatology, 21(11), 5464-5483. https://doi.org/10.1111/jocd.15238
  • 43. Wang, W., Qiu, X., Dong, Q., Wang, J., Hao, Q., et al. (2022). Nanocapsule-based reactive nano-fragrances with slow-release and antibacterial performances for applications of commodities. Journal of Biomedical Nanotechnology, 18(4), 1138-1145. https://doi.org/10.1166/jbn.2022.3329
  • 44. Zhang, L., Yao, L., Zhao, F., Yu, A., Zhou, Y., et al. (2023). Protein and peptide-based nanotechnology for enhancing stability, bioactivity, and delivery of anthocyanins. Advance Healthcare Materials, 12(25), e2300473. https://doi.org/10.1002/adhm.202300473
  • 45. Zouboulis, C.C., Ganceviciene, R., Liakou, A.I., Theodoridis, A., Elewa, R., et al. (2019). Aesthetic aspects of skin aging, prevention, and local treatment. Clinical Dermatology, 37(4), 365-372. https://doi.org/10.1016/j.clindermatol.2019.04.002.
There are 44 citations in total.

Details

Primary Language English
Subjects Pharmacognosy
Journal Section Review Articles
Authors

İlkay Erdoğan Orhan 0000-0002-7379-5436

Fatma Sezer Şenol Deniz 0000-0002-5850-9841

Early Pub Date December 25, 2023
Publication Date December 25, 2023
Submission Date December 21, 2023
Acceptance Date December 24, 2023
Published in Issue Year 2023

Cite

APA Erdoğan Orhan, İ., & Şenol Deniz, F. S. (2023). Imperative Role of Natural Product Chemistry in Cosmeceutical R&D - Phytonanocosmeceuticals. Current Perspectives on Medicinal and Aromatic Plants, 6(2), 138-144. https://doi.org/10.38093/cupmap.1407895

-------------------------------------------------------------------------------------------------------------------------------

csm_neu_ezb_logo_670e8bf80b.jpg  Google_Scholar_logo_2015.PNG index_copernicus.jpg wclogo_block.png  logo.png  

Akademia_sosyal_bilimler_indeksi_logosu.gif  wide.png424-4243430_reviewers-for-these-journals-can-track-verify-and.png  orcid_logo.png?version=1&modificationDate=1473862307894&api=v2  1*mvsP194Golg0Dmo2rjJ-oQ.jpeg  aji.png citefactor-e1553074491226.png    logo1.jpg  semantci.png

-------------------------------------------------------------------------------------------------------------------------

88x31.png CUPMAP Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

-----------------------------------------------------------------------------------------------------------------------------------------

Open_Access_PLoS.svg

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or  use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.