Research Article
BibTex RIS Cite

Phytochemical Profiling and Biochemical Evaluation of Pineapple (Ananas comosus L. Merr) Fruit

Year 2025, Issue: Advanced Online Publication, 87 - 95

Abstract

This study aims to reveal the biochemical characteristics of pineapple (Ananas comosus L. Merr) fruit in terms of its fatty acid profile, vitamin and phytosterol content, as well as phenolic compounds and flavonoid composition. According to the analyses conducted, the predominant saturated fatty acids in pineapple were identified as palmitic acid (C16:0) and stearic acid (C18:0), with proportions of 16.232% and 5.524%, respectively. The total saturated fatty acid content was calculated as 22.829%. Among the unsaturated fatty acids, linoleic acid (C18:2n6c), oleic acid (C18:1n9c), and linolenic acid (C18:3n3) were found at levels of 21.707%, 19.924%, and 18.158%, respectively. The total unsaturated fatty acid content was determined to be 62.158%. In addition, high levels of significant bioactive compounds such as α-tocopherol (6.13 µg/g), β-sitosterol (154.31 µg/g), and vitamin D3 (3.1 µg/g) were detected in the fruit. Among the phenolic acids, notable amounts of gallic, ferulic, and rosmarinic acids were identified, while catechin, naringenin, and quercetin were among the prominent flavonoids. In antioxidant activity assays, pineapple extract exhibited radical scavenging activities of 66.45% for DPPH•, 62.07% for ABTS•, and 70.21% for OH•. Although these values were lower than those of the standard antioxidant BHT, they still indicate a significant level of natural antioxidant capacity. The findings demonstrate that pineapple is a rich source of fatty acids, tocopherols, phytosterols, and phenolic and flavonoid compounds, supporting its potential to be considered a functional food and a natural antioxidant source.

Ethical Statement

No conflict of interest was reported by the authors.

Supporting Institution

I would like to express my gratitude to the Scientific Research Projects Unit of Kilis 7 Aralık University for its financial support of this study.

Project Number

This research was financially supported by project number BAP 23/MAP/001.

Thanks

This research was financially supported by project number BAP 23/MAP/001. I would like to express my gratitude to the Scientific Research Projects Unit of Kilis 7 Aralık University for its financial support of this study.

References

  • 1. Abraham, R. A., Joshi, J., & Abdullah, S. (2023). A comprehensive review of pineapple processing and its by-product valorization in India. Food Chemistry Advances.https://doi.org/10.1016/j.fochadv.2023.100416
  • 2. Ajayi, A. M., John, K. A., Emmanuel, I. B., Chidebe, E. O., & Adedapo, A. D. A. (2021). High-fat diet-induced memory impairment and anxiety-like behavior in rats attenuated by peel extract of Ananas comosus fruit via atheroprotective, antioxidant and anti-inflammatory actions. Me1tabolism Open, 9, 100077. https://doi.org/10.1016/j.metop.2021.100077
  • 3. Alan, F., & Çolak, A. M. (2025). Egzotik Meyveler ve Kullanım Alanları. Tarım, Orman ve Su Konularında Modern Araştırmalar.
  • 4. Ali, M. M., Hashim, N., Bejo, S. K., Jahari, M., & Shahabudin, N. A. (2023). Innovative non-destructive technologies for quality monitoring of pineapples: Recent advances and applications. Trends in Food Science & Technology, 133, 176–188.
  • 5. Booth, S. L. (2009). Vitamin K: Food composition and dietary intakes. Food & Nutrition Research. https://doi.org/10.3402/fnr.v53i0.2078
  • 6. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28(1), 25–30.
  • 7. Calvo, M. S., & Whiting, S. J. (2013). Survey of current vitamin D food fortification practices in the United States and Canada. Journal of Steroid Biochemistry and Molecular Biology, 136,12–17. https://doi.org/10.1016/j.jsbmb.2012.05.006
  • 8. Chaudhary, V., Kumar, V., Singh, K., Kumar, R., & Kumar, V. (2019). Pineapple (Ananas comosus) product processing: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 4642–4652.
  • 9. Cherian, E., Kalavathy, G., Joshi, T. J., Phoebe, M. G. L., & Gurunathan, B. (2022). Importance of nanocatalyst and its role in biofuel production. In Biofuels and Bioenergy (pp. 171–182). Elsevier.
  • 10.Christie, W. W. (1990). Gas chromatography and lipids. The Oil Press.
  • 11. Clement, J. M., & Johnson, K. (2017). Fruit antioxidants: Impact on human health. Journal of Medicinal Food, 19(4), 25–31.
  • 12. Gökçe, Z., & Gökçen, E. N. (2024). Günümüzde tüketilen bazı tropik meyvelere genel bir bakış. In A. Aksoy & H. Akgül (Eds.), Biyoloji Alanında Uluslararası Araştırma ve Değerlendirmeler (ss. 37–53). Serüven Yayınevi.
  • 13. Halliwell, B., Gutteridge, J. M. C., & Aruoma, O. (1987). The deoxyribose method: A simple test tube assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry, 165, 215–219.
  • 14. Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420–426.
  • 15. Holick, M. F. (2007). Vitamin D deficiency. New England Journal of Medicine, 357(3), 266–281. https://doi.org/10.1056/NEJMra070553
  • 16. Katsanidis, E., & Addis, P. B. (1999). Novel HPLC analysis of tocopherols and cholesterol in tissue. Free Radical Biology and Medicine, 27, 1137–1140.
  • 17. Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzebska, J. (2006). HPLC method for simultaneous determination of retinol, alpha-tocopherol and coenzyme Q10 in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 42(2), 232–236.
  • 18. Lobo, M. G., & Siddiq, M. (2017). Overview of pineapple production, postharvest physiology, processing and nutrition. In Handbook of Pineapple Technology: Production, Postharvest Science, Processing and Nutrition (ss. 1–15). CRC Press.
  • 19. López-Cervantes, J., Sánchez-Machado, D. I., & Ríos-Vázquez, N. J. (2005). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. Journal of Chromatography A, 1105(1-2), 135–139.
  • 20. Namwong, A., & Malakul, W. (2023). Effect of pineapple on lipid metabolism in high cholesterol diet-fed rats [Doktora Tezi, Naresuan University].
  • 21. Nguyen, T. T., Nguyen, M. C., Tran, H. T., Thai, T. T., Luong, M. T., Nguyen, X. T. D., Le, N. H. H., & Tran, D. P. (2023). Antioxidant and anti-inflammatory activities of phenolic acids from tropical fruit by-products. Antioxidants, 12(4), 821.
  • 22.Pereira, R., Basto, A., Pintado, M., Valente, L. M., & Velasco, C. (2025). Inclusion of Pineapple By-Products as Natural Antioxidant Sources in Diets for European Sea Bass (Dicentrarchus labrax). Antioxidants, 14(3), 333. https://doi.org/10.3390/antiox14030333
  • 23. Pereira-Netto, A. B. (2018). Health benefits of fruits and vegetables: Review from Brazilian studies. Brazilian Journal of Food Technology, 21, e2017090. https://doi.org/10.1590/1981-6723.20717
  • 24. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.
  • 25. Rosas Dominguez, C., Domínguez Avila, J. A., Pareek, S., Villegas Ochoa, M. A., Ayala Zavala, J. F., Yahia, E., & González-Aguilar, G. A. (2018). Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv Esmeralda. Journal of Applied Botany and Food Quality, 91, 61–68.
  • 26. Rudzińska, A., Juchaniuk, P., Oberda, J., Wiśniewska, J., Wojdan, W., Szklener, K., & Mandziuk, S. (2023). Phytochemicals in Cancer Treatment and Cancer Prevention—Review on Epidemiological Data and Clinical Trials. Nutrients, 15(8), 1896. https://doi.org/10.3390/nu15081896
  • 27. Sanahuja, A. B., García, A. V., Baenas, N., Ferrando, B. O., Periago, M. J., Alonso, N. C., & Todolí, J. L. (2025). Valorization of Pineapple Core Waste for Sequential Extraction of Phenolic Compounds and Carotenoids: Optimization Through Ultrasound-Assisted Method and Box–Behnken Design. Food and Bioprocess Technology, 18(3), 2618–2631. https://doi.org/10.1007/s11947-024-03525-2
  • 28. Seenak, P., Kumphune, S., Malakul, W., Chotima, R., & Nernpermpisooth, N. (2021). Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutrition & Metabolism, 18(1), 1–10. https://doi.org/10.1186/s12986-021-00566-z
  • 29. Sanahuja, B., Fuster-Botella, V., Gámez-Vallejo, J., Llorca, E., & Llorca, V. (2025). Free radical scavenging and phenolic composition of pineapple plant extracts. Antioxidants, 14(1),
  • 30. Sharma, A., Kumar, L., Malhotra, M., Singh, A. P., & Singh, A. P. (2024a). Ananas comosus (Pineapple): A Comprehensive Review of Its Medicinal Properties, Phytochemical Composition, and Pharmacological Activities. Journal of Drug Delivery & Therapeutics, 14(5).
  • 31. Sharma, R., Mehra, A., Kour, R., Sharma, D., Kumar, V., & Kumar, J. (2024b). Phytochemical analysis and antioxidant potential of pineapple (Ananas comosus) peel extract. Journal of Food Biochemistry, 48(2), e14356.
  • 32. Sun, G. M., Zhang, X. M., Soler, A., & Marie-Alphonsine, P. A. (2016). Nutritional Composition of Pineapple (Ananas comosus (L.) Merr.). In M. S. J. Simmonds & V. R. Preedy (Eds.), Nutritional Composition of Fruit Cultivars (ss. 609–637). Academic Press.
  • 33. Tumane, P. M., Sanchari, S., Wasnik, D. D., & Kolte, N. A. (2018). Production of vinegar from pineapple peels using Acetobacter species isolated from soil sample and its antibacterial activity. International Journal of Life Sciences, 6(4), 948–956.
  • 34. Zhang, Y., Wang, Z., Li, Y., Wu, M., Guo, J., Song, Y., Su, R., Cao, Y., Liu, D., & Yang, B. (2020). Mechanistic insights into the antioxidant properties of catechin and its derivatives. Food Chemistry, 323, 126849.
  • 35. Zuo, Z., & Cheng, J. (2014). Mechanisms of antioxidant bioactivity in fruit. Journal of Biochemical Research, 25(2), 132–138.

Ananas (Ananas comosus L. Merr) Meyvesinin Fitokimyasal Profili ve Biyokimyasal Değerlendirmesi

Year 2025, Issue: Advanced Online Publication, 87 - 95

Abstract

Bu çalışmada ananas (Ananas comosus L. Merr) meyvesinin yağ asidi profili, vitamin ve fitosterol içeriği ile fenolik bileşikler ve flavonoid kompozisyonu açısından biyokimyasal özelliklerinin ortaya konulması amaçlanmıştır. Yapılan analizlere göre ananasta baskın doymuş yağ asitleri sırasıyla %16,232 ve %5,524 oranlarında palmitik asit (C16:0) ve stearik asit (C18:0) olarak belirlenmiştir. Toplam doymuş yağ asidi içeriği %22,829 olarak hesaplanmıştır. Doymamış yağ asitlerinden linoleik asit (C18:2n6c), oleik asit (C18:1n9c) ve linolenik asit (C18:3n3) sırasıyla %21,707, %19,924 ve %18,158 düzeylerinde bulunmuştur. Toplam doymamış yağ asidi içeriği %62,158 olarak belirlendi. Ayrıca meyvelerde α-tokoferol (6,13 µg/g), β-sitosterol (154,31 µg/g) ve D3 vitamini (3,1 µg/g) gibi önemli biyoaktif bileşiklerin yüksek seviyeleri tespit edildi. Fenolik asitler arasında önemli miktarlarda gallik, ferulik ve rosmarinik asitler tanımlanırken, kateşin, naringenin ve kuersetin öne çıkan flavonoidler arasındaydı. Antioksidan aktivite testlerinde ananas özütü DPPH• için %66,45, ABTS• için %62,07 ve OH• için %70,21 radikal süpürücü aktivite gösterdi. Bu değerler standart antioksidan BHT'nin değerlerinden düşük olmasına rağmen, yine de önemli düzeyde doğal antioksidan kapasitesine işaret etmektedir. Bulgular, ananasın yağ asitleri, tokoferoller, fitosteroller, fenolik ve flavonoid bileşikler açısından zengin bir kaynak olduğunu ve fonksiyonel bir gıda ve doğal bir antioksidan kaynağı olarak kabul edilme potansiyelini desteklediğini göstermektedir.

Ethical Statement

Yazarlar tarafından herhangi bir çıkar çatışması bildirilmemiştir.

Supporting Institution

Kilis 7 Aralık Üniversitesi

Project Number

This research was financially supported by project number BAP 23/MAP/001.

Thanks

Bu araştırma BAP 23/MAP/001 proje numarasıyla finansal olarak desteklenmiştir. Bu çalışmaya sağladığı finansal destekten dolayı Kilis 7 Aralık Üniversitesi Bilimsel Araştırma Projeleri Birimi'ne şükranlarımı sunarım.

References

  • 1. Abraham, R. A., Joshi, J., & Abdullah, S. (2023). A comprehensive review of pineapple processing and its by-product valorization in India. Food Chemistry Advances.https://doi.org/10.1016/j.fochadv.2023.100416
  • 2. Ajayi, A. M., John, K. A., Emmanuel, I. B., Chidebe, E. O., & Adedapo, A. D. A. (2021). High-fat diet-induced memory impairment and anxiety-like behavior in rats attenuated by peel extract of Ananas comosus fruit via atheroprotective, antioxidant and anti-inflammatory actions. Me1tabolism Open, 9, 100077. https://doi.org/10.1016/j.metop.2021.100077
  • 3. Alan, F., & Çolak, A. M. (2025). Egzotik Meyveler ve Kullanım Alanları. Tarım, Orman ve Su Konularında Modern Araştırmalar.
  • 4. Ali, M. M., Hashim, N., Bejo, S. K., Jahari, M., & Shahabudin, N. A. (2023). Innovative non-destructive technologies for quality monitoring of pineapples: Recent advances and applications. Trends in Food Science & Technology, 133, 176–188.
  • 5. Booth, S. L. (2009). Vitamin K: Food composition and dietary intakes. Food & Nutrition Research. https://doi.org/10.3402/fnr.v53i0.2078
  • 6. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28(1), 25–30.
  • 7. Calvo, M. S., & Whiting, S. J. (2013). Survey of current vitamin D food fortification practices in the United States and Canada. Journal of Steroid Biochemistry and Molecular Biology, 136,12–17. https://doi.org/10.1016/j.jsbmb.2012.05.006
  • 8. Chaudhary, V., Kumar, V., Singh, K., Kumar, R., & Kumar, V. (2019). Pineapple (Ananas comosus) product processing: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 4642–4652.
  • 9. Cherian, E., Kalavathy, G., Joshi, T. J., Phoebe, M. G. L., & Gurunathan, B. (2022). Importance of nanocatalyst and its role in biofuel production. In Biofuels and Bioenergy (pp. 171–182). Elsevier.
  • 10.Christie, W. W. (1990). Gas chromatography and lipids. The Oil Press.
  • 11. Clement, J. M., & Johnson, K. (2017). Fruit antioxidants: Impact on human health. Journal of Medicinal Food, 19(4), 25–31.
  • 12. Gökçe, Z., & Gökçen, E. N. (2024). Günümüzde tüketilen bazı tropik meyvelere genel bir bakış. In A. Aksoy & H. Akgül (Eds.), Biyoloji Alanında Uluslararası Araştırma ve Değerlendirmeler (ss. 37–53). Serüven Yayınevi.
  • 13. Halliwell, B., Gutteridge, J. M. C., & Aruoma, O. (1987). The deoxyribose method: A simple test tube assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry, 165, 215–219.
  • 14. Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90(1), 420–426.
  • 15. Holick, M. F. (2007). Vitamin D deficiency. New England Journal of Medicine, 357(3), 266–281. https://doi.org/10.1056/NEJMra070553
  • 16. Katsanidis, E., & Addis, P. B. (1999). Novel HPLC analysis of tocopherols and cholesterol in tissue. Free Radical Biology and Medicine, 27, 1137–1140.
  • 17. Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzebska, J. (2006). HPLC method for simultaneous determination of retinol, alpha-tocopherol and coenzyme Q10 in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 42(2), 232–236.
  • 18. Lobo, M. G., & Siddiq, M. (2017). Overview of pineapple production, postharvest physiology, processing and nutrition. In Handbook of Pineapple Technology: Production, Postharvest Science, Processing and Nutrition (ss. 1–15). CRC Press.
  • 19. López-Cervantes, J., Sánchez-Machado, D. I., & Ríos-Vázquez, N. J. (2005). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. Journal of Chromatography A, 1105(1-2), 135–139.
  • 20. Namwong, A., & Malakul, W. (2023). Effect of pineapple on lipid metabolism in high cholesterol diet-fed rats [Doktora Tezi, Naresuan University].
  • 21. Nguyen, T. T., Nguyen, M. C., Tran, H. T., Thai, T. T., Luong, M. T., Nguyen, X. T. D., Le, N. H. H., & Tran, D. P. (2023). Antioxidant and anti-inflammatory activities of phenolic acids from tropical fruit by-products. Antioxidants, 12(4), 821.
  • 22.Pereira, R., Basto, A., Pintado, M., Valente, L. M., & Velasco, C. (2025). Inclusion of Pineapple By-Products as Natural Antioxidant Sources in Diets for European Sea Bass (Dicentrarchus labrax). Antioxidants, 14(3), 333. https://doi.org/10.3390/antiox14030333
  • 23. Pereira-Netto, A. B. (2018). Health benefits of fruits and vegetables: Review from Brazilian studies. Brazilian Journal of Food Technology, 21, e2017090. https://doi.org/10.1590/1981-6723.20717
  • 24. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.
  • 25. Rosas Dominguez, C., Domínguez Avila, J. A., Pareek, S., Villegas Ochoa, M. A., Ayala Zavala, J. F., Yahia, E., & González-Aguilar, G. A. (2018). Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv Esmeralda. Journal of Applied Botany and Food Quality, 91, 61–68.
  • 26. Rudzińska, A., Juchaniuk, P., Oberda, J., Wiśniewska, J., Wojdan, W., Szklener, K., & Mandziuk, S. (2023). Phytochemicals in Cancer Treatment and Cancer Prevention—Review on Epidemiological Data and Clinical Trials. Nutrients, 15(8), 1896. https://doi.org/10.3390/nu15081896
  • 27. Sanahuja, A. B., García, A. V., Baenas, N., Ferrando, B. O., Periago, M. J., Alonso, N. C., & Todolí, J. L. (2025). Valorization of Pineapple Core Waste for Sequential Extraction of Phenolic Compounds and Carotenoids: Optimization Through Ultrasound-Assisted Method and Box–Behnken Design. Food and Bioprocess Technology, 18(3), 2618–2631. https://doi.org/10.1007/s11947-024-03525-2
  • 28. Seenak, P., Kumphune, S., Malakul, W., Chotima, R., & Nernpermpisooth, N. (2021). Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutrition & Metabolism, 18(1), 1–10. https://doi.org/10.1186/s12986-021-00566-z
  • 29. Sanahuja, B., Fuster-Botella, V., Gámez-Vallejo, J., Llorca, E., & Llorca, V. (2025). Free radical scavenging and phenolic composition of pineapple plant extracts. Antioxidants, 14(1),
  • 30. Sharma, A., Kumar, L., Malhotra, M., Singh, A. P., & Singh, A. P. (2024a). Ananas comosus (Pineapple): A Comprehensive Review of Its Medicinal Properties, Phytochemical Composition, and Pharmacological Activities. Journal of Drug Delivery & Therapeutics, 14(5).
  • 31. Sharma, R., Mehra, A., Kour, R., Sharma, D., Kumar, V., & Kumar, J. (2024b). Phytochemical analysis and antioxidant potential of pineapple (Ananas comosus) peel extract. Journal of Food Biochemistry, 48(2), e14356.
  • 32. Sun, G. M., Zhang, X. M., Soler, A., & Marie-Alphonsine, P. A. (2016). Nutritional Composition of Pineapple (Ananas comosus (L.) Merr.). In M. S. J. Simmonds & V. R. Preedy (Eds.), Nutritional Composition of Fruit Cultivars (ss. 609–637). Academic Press.
  • 33. Tumane, P. M., Sanchari, S., Wasnik, D. D., & Kolte, N. A. (2018). Production of vinegar from pineapple peels using Acetobacter species isolated from soil sample and its antibacterial activity. International Journal of Life Sciences, 6(4), 948–956.
  • 34. Zhang, Y., Wang, Z., Li, Y., Wu, M., Guo, J., Song, Y., Su, R., Cao, Y., Liu, D., & Yang, B. (2020). Mechanistic insights into the antioxidant properties of catechin and its derivatives. Food Chemistry, 323, 126849.
  • 35. Zuo, Z., & Cheng, J. (2014). Mechanisms of antioxidant bioactivity in fruit. Journal of Biochemical Research, 25(2), 132–138.
There are 35 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Zehra Gökçe 0000-0001-7855-2700

Project Number This research was financially supported by project number BAP 23/MAP/001.
Submission Date September 28, 2025
Acceptance Date November 7, 2025
Early Pub Date November 25, 2025
Published in Issue Year 2025 Issue: Advanced Online Publication

Cite

APA Gökçe, Z. (2025). Phytochemical Profiling and Biochemical Evaluation of Pineapple (Ananas comosus L. Merr) Fruit. Current Perspectives on Medicinal and Aromatic Plants(Advanced Online Publication), 87-95. https://doi.org/10.38093/cupmap.1792652

-------------------------------------------------------------------------------------------------------------------------------

csm_neu_ezb_logo_670e8bf80b.jpg  Google_Scholar_logo_2015.PNG index_copernicus.jpg wclogo_block.png  logo.png  

Akademia_sosyal_bilimler_indeksi_logosu.gif  wide.png424-4243430_reviewers-for-these-journals-can-track-verify-and.png  orcid_logo.png?version=1&modificationDate=1473862307894&api=v2  1*mvsP194Golg0Dmo2rjJ-oQ.jpeg  aji.png citefactor-e1553074491226.png    logo1.jpg  semantci.png

-------------------------------------------------------------------------------------------------------------------------

88x31.png CUPMAP Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

-----------------------------------------------------------------------------------------------------------------------------------------

Open_Access_PLoS.svg

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or  use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.