Research Article
BibTex RIS Cite

Deprem Dirençliliği Bağlamında Kırılganlık Değerlendirmesi: Bayraklı, İzmir Örneği

Year 2026, Volume: 12 Issue: 1, 1 - 32, 25.01.2026
https://doi.org/10.21324/dacd.1664234

Abstract

Depremler, tüm doğal afetler arasında, Türkiye tarihinde en yıkıcı sonuçlara yol açmıştır. Afet kaynaklı can kayıplarının çoğunluğu depremlerden kaynaklanmaktadır. Bayraklı, tarihi ve ekonomik öneminin yanı sıra, İzmir'in yüksek afet riski ve deprem tehlikelerine karşı savunmasız yapı stoğunun yoğun olduğu bir ilçesidir. Bu çalışmada, Bayraklı’nın deprem kırılganlığının değerlendirilmesi amaçlanmış ve Bayraklı'nın tüm mahallelerini (24 mahalle) kapsayacak şekilde mahalle ölçeğinde uygulanmıştır. Çalışmada kapsamlı bir kırılganlık değerlendirmesi yapılmış olup bu değerlendirmeüç boyutu kapsamaktadır: fiziksel kırılganlık, sosyal kırılganlık ve yapılı çevrenin fiziksel kapasitesi. Çalışmanın temelinde uzman değerlendirmelerine dayanarak, AHP yöntemi ile yapılan deprem kırılganlığı ile ilgili kriterlerin göreceli önemi ortaya çıkarılmıştır. Her ana boyut için oluşturulan kırılganlık haritaları, Çay ve Çiçek’i içeren en savunmasız mahalleleri ortaya koyan çalışma alanının nihai kırılganlık haritasında birleştirilmiştir. Çalışmaen etkili faktörlerive en savunmasız bölgeleri gösteren bulgular, Bayraklı'nın deprem tehlikelerine karşı kırılganlığını azaltmak için stratejileri teşvik edebilecek özel müdahalelere olanak tanımaktadır.

References

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockström, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036–1039. https://doi.org/10.1126/science.1112122
  • Agliata, R., Bortone, A., & Mollo, L. (2021). Indicator-based approach for the assessment of intrinsic physical vulnerability of the built environment to hydro-meteorological hazards: Review of indicators and example of parameters selection for a sample area. International Journal of Disaster Risk Reduction, 58, Article 102199. https://doi.org/10.1016/j.ijdrr.2021.102199
  • Akurgal, E. (1993). Eski İzmir: Yerleşme katları ve Athena Tapınağı. Türk Tarih Kurumu Yayınları.
  • ArcGIS Resource Center. (2024). Resources. Retrieved at May 18, 2023, from https://www.esri.com/en-us/arcgis/products/arcgis-online/resources
  • Armaș, I. (2012). Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania. Natural Hazards, 63(2), 1129–1156. https://doi.org/10.1007/s11069-012-0209-2
  • Armaș, I., & Gavriș, A. (2013). Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the social vulnerability index (SoVI model) – A case study for Bucharest, Romania. Natural Hazards and Earth System Sciences, 13(6), 1481–1499. https://doi.org/10.5194/nhess-13-1481-2013
  • Askan, A., Gülerce, Z., & Roumelioti, Z. (2022). The Samos Island (Aegean Sea) M7.0 earthquake: analysis and engineering implications of strong motion data. Bulletin of Earthquake Engineering, 20, 7737–7762. https://doi.org/10.1007/s10518-021-01251-5
  • Badmos, B. K., Adenle, A. A., Agodzo, S. K., Villamor, G. B., Asare-Kyei, D. K., Amadou, L. M., & Odai, S. N. (2018). Micro-level social vulnerability assessment towards climate change adaptation in semi-arid Ghana, West Africa. Environment, Development and Sustainability, 20(5), 2261–2279. https://doi.org/10.1007/s10668-017-9988-7
  • Birkmann, J., & Wisner, B. (2006). Measuring the un-measurable: The challenge of vulnerability (UNU-EHS SOURCE No. 5). United Nations University, Institute for Environment and Human Security. http://collections.unu.edu/eserv/UNU:1872/pdf3962.pdf
  • Bollin, C., Cárdenas, C., Hahn, H., & Vatsa, K. S. (2003). Disaster risk management by communities and local governments. Inter-American Development Bank. https://doi.org/10.18235/0008775
  • Cochrane, S. W., & Schaad, W. H. (1992). Assessment of earthquake vulnerability of buildings. In Proceedings of the Tenth World Conference on Earthquake Engineering (Vol. 1, pp. 497–502). A.A. Balkema.
  • Crichton, D. (1999). The risk triangle. In J. Ingleton (Ed.), Natural disaster management (pp. 102–103). Tudor Rose.
  • Crowley, J. (2021). Social vulnerability factors and reported post-disaster needs in the aftermath of Hurricane Florence. International Journal of Disaster Risk Science, 12(1), 13–23. https://doi.org/10.1007/s13753-020-00315-5
  • Cutter, S. L. (1993). Living with risk: The geography of technological hazards. Edward Arnold.
  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000) Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90, 713–37. https://doi.org/10.1111/0004-5608.00219
  • Cutter, S. L. (Ed.). (2001). American hazardscapes: The regionalization of hazards and disasters. Joseph Henry Press. https://doi.org/10.17226/10132
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
  • Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences, 105(7), 2301–2306. https://doi.org/10.1073/pnas.0710375105
  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A Place-based Model for Understanding Community Resilience to Natural Disasters. Global Environmental Change, 18(4), 598–606.
  • Daddoust, L., Khankeh, H. R., Ebadi, A., Sahaf, R., Nakhaei, M., & Asgary, A. (2018). The social vulnerability of older people to natural disasters: An integrative review. Health in Emergencies and Disasters Quarterly, 4(1), 5–14.
  • Davidson, R. A., & Shah, H. C. (1997). An urban earthquake disaster risk index (Technical Report No. 121). The John A. Blume Earthquake Engineering Center, Stanford University. https://doi.org/10.25740/zy159jm6182
  • Dayton-Johnson, J. (2004). Natural disasters and adaptive capacity (OECD Development Centre Working Papers No. 237). OECD Publishing. https://doi.org/10.1787/827805005406
  • Dokuz Eylül University Earthquake Research and Application Center. (2020). 30 October 2020 Samos earthquake (Mw 6.9) evaluation report. https://daum.deu.edu.tr/wp-content/uploads/2020/11/Samos-Deprem-Raporu.pdf
  • Dow, K. (1992). Exploring differences in our common future(s): The meaning of vulnerability to global environmental change. Geoforum, 23(3), 417–436. https://doi.org/10.1016/0016-7185(92)90052-6
  • Duzgun, H. S. B., Yucemen, M. S., Kalaycioglu, H. S., Celik, K., Kemec, S., Ertugay, K., & Deniz, A. (2011). An integrated earthquake vulnerability assessment framework for urban areas. Natural Hazards, 59(2), 917–947.
  • Dwyer, A., Zoppou, C., Nielsen, O., Day, S., & Roberts, S. (2004). Quantifying social vulnerability: A methodology for identifying those at risk to natural hazards (Geoscience Australia Record 2004/14). Geoscience Australia. https://www.ga.gov.au/bigobj/GA4267.pdf
  • Eğilmez, D. B. (2010). İzmir’de kentsel dönüşüm ve dönüştürülemeyen zorunlu yoksulluk halleri. In D. Yıldırım & E. Haspolat (Eds.), Değişen İzmir’i anlamak (pp. 601–638). Phoenix.
  • Engle, N. L. (2011). Adaptive capacity and its assessment. Global Environmental Change, 21(2), 647–656. https://doi.org/10.1016/j.gloenvcha.2011.01.019
  • Farin, F., Ardalan, A., Aguirre, B., Mansouri, N., & Mohammadfam, I. (2017). Social vulnerability indicators in disasters: Findings from a systematic review. International Journal of Disaster Risk Reduction, 22, 219–227.
  • Fischer, T., Alvarez, M., De la Llera, J. C., & Riddell, L. (2002). An integrated model for earthquake risk assessment of buildings. Engineering Structures, 24(7), 979–998. https://doi.org/10.1016/S0141-0296(02)00018-4
  • Forman, E. H., & Gass, S. I. (2001). The analytic hierarchy process—An exposition. Operations Research, 49(4), 469–486. https://doi.org/10.1287/opre.49.4.469.11231
  • Gallopin, G. C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 16(3), 293–303. https://doi.org/10.1016/j.gloenvcha.2006.02.004
  • General Directorate of Mineral Exploration and Research. (2020). 30 October 2020 Aegean Sea earthquake (Mw 6.9): Field observations and evaluation report. Retreived at June 20, 2024, from https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/deprem/ pdf/30.10.2020_ Ege_Denizi_ Depremi_Saha_Gozlemleri_ve_Degerlendirme_Raporu.pdf
  • Gerçek, D., & Güven, İ. T. (2016). Kentsel Dirençliliğin Coğrafi Bilgi Sistemleri Ile Analizi: Deprem ve İzmit Kenti. Harita Teknolojileri Elektronik Dergisi, 8(1), 51-64. https://doi.org/10.15659/hartek.16.04.298
  • Geurs, K. T., & Van Wee, B. (2004). Accessibility Evaluation of Land-use and Transport Strategies: Review and Research Directions. Journal of Transport Geography, 12(2), 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005
  • Han, J., Nur, A., Syifa, M., Ha, M., Lee, C.-W., & Lee, K.-Y. (2021). Improvement of earthquake risk awareness and seismic literacy of Korean citizens through earthquake vulnerability map from the 2017 Pohang earthquake, South Korea. Remote Sensing, 13(7), Article 1365. https://doi.org/10.3390/rs13071365
  • Hassanzadeh, R., Nedović-Budić, Z., Razavi, A. A., Norouzzadeh, M., & Hodhodkian, H. (2013). Interactive approach for GIS-based earthquake scenario development and resource estimation (Karmania hazard model). Computers & Geosciences, 51, 324–338. https://doi.org/10.1016/j.cageo.2012.08.016
  • Hirayama, M., Shinozaki, H., Kasai, N., & Otaki, T. (2018). Comparative risk study of hydrogen and gasoline dispensers for vehicles. International Journal of Hydrogen Energy, 43(27), 12584–12594. https://doi.org/10.1016/j.ijhydene.2018.05.003
  • Hogberg Yilmaz, M. (2020). The urban planning of Istanbul and the provision of green resilient zones in an earthquake-hit metropolitan area: A case study of Istanbul & Avcılar [Bachelor’s thesis, Örebro University].
  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245
  • Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. C. Schulze (Ed.), Engineering within ecological constraints (pp. 31–44). National Academies Press.
  • Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336–14345. https://doi.org/10.1016/j.eswa.2011.04.143
  • İzmir Provincial Disaster and Emergency Management Directorate. (2021). İzmir İl Afet Risk Azaltma Planı (İRAP). Retrieved June 20, 2025, from https://izmir.afad.gov.tr/kurumlar/izmir.afad/E-KUTUPHANE/Il-Planlari/Izmir-IRAP.pdf
  • İzmir Metropolitan Municipality. (2023a). İzmir Earthquake Scenario and Earthquake Master Plan. Retrieved July 15, 2023, from https://www.izmir.bel.tr/izmirdeprem/
  • İzmir Metropolitan Municipality. (2023b). Building Identity Data. Open Data Portal. Retrieved July 15, 2023, from https://acikveri.bizizmir.com/
  • Joshi, G. C., Ghildiyal, S., & Rautela, P. (2019). Seismic vulnerability of lifeline buildings in Himalayan Province of Uttarakhand in India. International Journal of Disaster Risk Reduction, 37, Article 101168. https://doi.org/10.1016/j.ijdrr.2019.101168
  • Kappes, M., & Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 32(2), 577–590. https://doi.org/10.1016/j.apgeog.2011.07.002
  • Karadağ, A., & Mirioğlu, G. (2011). Bayraklı kentsel dönüşüm projesi üzerine coğrafi değerlendirmeler. Türk Coğrafya Dergisi, 57, 21–32. https://doi.org/10.17211/tcd.53573
  • Kircher, C. A., Whitman, R. V., & Holmes, W. T. (2006). HAZUS earthquake loss estimation methods. Natural Hazards Review, 7(2), 45–59. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45)
  • Kusenbach, M., Simms, J. L., & Tobin, G. A. (2010). Disaster vulnerability and evacuation readiness: Coastal mobile home residents in Florida. Natural Hazards, 52(1), 79–95. https://doi.org/10.1007/s11069-009-9358-3
  • Lee, Y. J. (2014). Social vulnerability indicators as a sustainable planning tool. Environmental Impact Assessment Review, 44, 31–42. https://doi.org/10.1016/j.eiar.2013.08.002
  • Lei, Y., Wang, J., Yue, Y., Zhou, H., & Yin, W. (2013). Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Natural Hazards, 70(1), 609–627. https://doi.org/10.1007/s11069-013-0831-7
  • Liu, K. (2020). Post-earthquake medical evacuation system design based on hierarchical multi-objective optimization model: An earthquake case study. International Journal of Disaster Risk Reduction, 51, Article 101785. https://doi.org/10.1016/j.ijdrr.2020.101785
  • Malgwi, M. B., Fuchs, S., & Keiler, M. (2020). A generic physical vulnerability model for floods: Review and concept for data-scarce regions. Natural Hazards and Earth System Sciences, 20(7), 2067–2090. https://doi.org/10.5194/nhess-20-2067-2020
  • Maltais, D. (2019). Elderly people with disabilities and natural disasters: Vulnerability of seniors and post trauma. Gerontology & Geriatric Medicine, 5(4), 1–7. https://doi.org/10.24966/GGM-8662/100041
  • Manyena, S. B. (2006). The concept of resilience revisited. Disasters, 30(4), 433–450. https://doi.org/10.1111/j.0361-3666.2006.00331.x
  • Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani District, Zimbabwe. Geoforum, 86, 103–117. https://doi.org/10.1016/j.geoforum.2017.09.008
  • Mavhura, E. (2019). Systems analysis of vulnerability to hydrometeorological threats: An exploratory study of vulnerability drivers in northern Zimbabwe. International Journal of Disaster Risk Science, 10(2), 204–219. https://doi.org/10.1007/s13753-019-0217-x
  • Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning, 147, 38–49. https://doi.org/10.1016/j.landurbplan.2015.11.011
  • Middle East Technical University. (2020). The october 30, 2020 İzmir-Seferihisar Offshore (Samos) Earthquake (mw=6.6) Reconnaissance Observations and Findings (Report No: METU/EERC 2020-03). Earthquake Engineering Research Center, Middle East Technical University.
  • Miller, F., Osbahr, H., Boyd, E., Thomalla, F., Bharwani, S., Ziervogel, G., Walker, B., Birkmann, J., Van der Leeuw, S., Rockström, J., Hinkel, J., Downing, T., Folke, C., & Nelson, D. (2010). Resilience and vulnerability: Complementary or conflicting concepts? Ecology and Society, 15(3), Article 11. https://doi.org/10.5751/ES-03378-150311
  • No, W., Choi, J., Park, S., & Lee, D. (2020). Balancing hazard exposure and walking distance in evacuation route planning during earthquake disasters. ISPRS International Journal of Geo-Information, 9(7), Article 432. https://doi.org/10.3390/ijgi9070432
  • Notaro, V., De Marchis, M., Fontanazza, C. M., La Loggia, G., Puleo, V., & Freni, G. (2014). The effect of damage functions on urban flood damage appraisal. Procedia Engineering, 70, 1251–1260. https://doi.org/10.1016/j.proeng.2014.02.138
  • Onat, Ö. (2022). Deprem etkisindeki betonarme yapılarda meydana gelen hasarlara dolgu duvar etkisinin incelenmesi: 30 Ekim 2020 İzmir depremi örneği [Yüksek lisans tezi, Isparta Uygulamalı Bilimler Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Onder, Z., Dökmeci, V., & Keskin, B. (2004). The impact of public perception of earthquake risk on Istanbul’s housing market. Journal of Real Estate Literature, 12(2), 181–194. http://www.jstor.org/stable/44103487
  • Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., Wenzel, H., & Dominey-Howes, D. (2007). Elements at risk as a framework for assessing the vulnerability of communities to landslides. Natural Hazards and Earth System Sciences, 7(6), 765–779. https://doi.org/10.5194/nhess-7-765-2007
  • Papathoma-Köhle, M., Schlögl, M., & Fuchs, S. (2019). Vulnerability indicators for natural hazards: An innovative selection and weighting approach. Scientific Reports, 9(1), Article 15026. https://doi.org/10.1038/s41598-019-50257-2
  • Parry, M. L., Carter, T. R., & Konijn, N. T. (Eds.). (1988). The impact of climatic variations on agriculture: Volume 1: Assessment in cool temperate and cold regions. Springer. https://doi.org/10.1007/978-94-009-2943-2
  • Pereira, S., Santos, P. P., Zêzere, J. L., Tavares, A. O., Garcia, R. A. C., & Oliveira, S. C. (2020). A landslide risk index for municipal land use planning in Portugal. Science of the Total Environment, 735, Article 139463. https://doi.org/10.1016/j.scitotenv.2020.139463
  • Rajarathnam, S., & Santhakumar, A. R. (2015). Assessment of seismic building vulnerability based on rapid visual screening technique aided by aerial photographs on a GIS platform. Natural Hazards, 78(2), 779–802. https://doi.org/10.1007/s11069-014-1382-2
  • Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process (2nd ed.). Springer. https://doi.org/10.1007/978-1-4614-3597-6
  • Sarris, A., Loupasakis, C., Soupios, P., Trigkas, V., Vallianatos, F. (2009). Earthquake Vulnerability and Seismic Risk Assessment of Urban Areas in High Seismic Regions: Application to Chania City, Crete Island, Greece. Natural Hazards, 54, 395–412. https://doi.org/10.1007/s11069-009-9475-z
  • Shafapourtehrany, M., Yariyan, P., Özener, H., Pradhan, B., & Shabani, F. (2022). Evaluating the application of K-mean clustering in earthquake vulnerability mapping of Istanbul, Turkey. International Journal of Disaster Risk Reduction, 79, Article 103154. https://doi.org/10.1016/j.ijdrr.2022.103154
  • Siagian, T. H., Purhadi, P., Suhartono, S., & Ritonga, H. (2013). Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Natural Hazards, 70(2), 1603–1617. https://doi.org/10.1007/s11069-013-0888-3
  • Silva, M., & Pereira, S. (2014). Assessment of physical vulnerability and potential losses of buildings due to shallow slides. Natural Hazards, 72(2), 1029–1050. https://doi.org/10.1007/s11069-014-1052-4
  • Singh, A., Kanungo, D. P., & Pal, S. (2019). Physical vulnerability assessment of buildings exposed to landslides in India. Natural Hazards, 96(2), 753–790. https://doi.org/10.1007/s11069-018-03568-y
  • Stephenson, V., & D’Ayala, D. (2014). A new approach to flood vulnerability assessment for historic buildings in England. Natural Hazards and Earth System Sciences, 14(5), 1035–1048. https://doi.org/10.5194/nhess-14-1035-2014
  • Taherdoost, H., & Madanchian, M. (2023). Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia, 3(1), 77–87. https://doi.org/10.3390/encyclopedia3010006
  • Tantala, M. W., Nordenson, J. P., Deodatis, G., & Jacob, K. (2008). Earthquake loss estimation for the New York City metropolitan region. Soil Dynamics and Earthquake Engineering, 28(10), 812–835. https://doi.org/10.1016/j.soildyn.2007.10.012
  • Turkish Statistical Institute. (2019). Address-Based Population Registration System. Retrieved June 20, 2025, from https://nip.tuik.gov.tr/Home/Adnks
  • Turkish Statistical Institute. (2023). Address-Based Population Registration System Results, 2023. Retrieved June 20, 2025, from https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684
  • Turner, B. L., II, Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079. https://doi.org/10.1073/pnas.1231335100
  • Uzielli, M., Catani, F., Tofani, V., & Casagli, N. (2015). Risk analysis for the Ancona landslide—II: Estimation of risk to buildings. Landslides, 12(1), 83–100. https://doi.org/10.1007/s10346-014-0477-x
  • Vogel, C., Moser, S. C., Kasperson, R. E., & Dabelko, G. D. (2007). Linking vulnerability, adaptation, and resilience science to practice: Pathways, players, and partnerships. Global Environmental Change, 17(3), 349–364.
  • Walker, B. B., Taylor-Noonan, C., Tabbernor, A., McKinnon, T., Bal, H., Bradley, D., Schuurman, N., & Clague, J. J. (2014). A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia. Natural Hazards, 74(2), 1209–1222.
  • Wisner, B., Blaikie, P., Cannon, T. and Davis, I. (2004) Earthquakes and Volcanoes. In B. Wisner, P. Blaikie, T. Cannon, & I. Davis (Eds,), At risk: Natural hazards, people’s vulnerability and Disasters (2nd Edition, pp. 274-303). Routledge.
  • Wood, N. J., Burton, C. G., & Cutter, S. L. (2010). Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest. Natural Hazards, 52(2), 369–389. https://doi.org/10.1007/s11069-009-9376-1
  • Yakut, A., Sucuoğlu, H., Binici, B., Canbay, E., Donmez, C., İlki, A., Caner, A., Celik, O. C., & Ay, B. Ö. (2022). Performance of structures in İzmir after the Samos island earthquake. Bulletin of Earthquake Engineering, 20(14), 7793–7818. https://doi.org/10.1007/s10518-021-01226-6
  • Yariyan, P., Avand, M., Soltani, F., Ghorbanzadeh, O., & Blaschke, T. (2020a). Earthquake vulnerability mapping using different hybrid models. Symmetry, 12(3), Article 405. https://doi.org/10.3390/sym12030405
  • Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020b). Earthquake risk assessment using an integrated fuzzy analytic hierarchy process with artificial neural networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, Article 101705. https://doi.org/10.1016/j.ijdrr.2020.101705
  • Young, O. R., Berkhout, F., Gallopín, G. C., Janssen, M., Ostrom, E., & van der Leeuw, S. (2006). The globalization of socio-ecological systems: An agenda for scientific research. Global Environmental Change, 16(3), 304–316.
  • Zhou, H., Wang, J., Wan, J., & Jia, H. (2010). Resilience to natural hazards: A geographic perspective. Natural Hazards, 53(1), 21–41. https://doi.org/10.1007/s11069-009-9407-y

Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey

Year 2026, Volume: 12 Issue: 1, 1 - 32, 25.01.2026
https://doi.org/10.21324/dacd.1664234

Abstract

Earthquakes, among all natural hazards, have historically caused the most devastating impacts in Turkey, accounting for the majority of disaster-related casualties. Besides its historical and economic importance, Bayraklı is a district of İzmir with high disaster risk and a high concentration of building stock that is vulnerable to earthquake hazards. This study aims to assess the earthquake vulnerability of the district and was implemented at the neighborhood scale, covering all neighborhoods of Bayraklı (24 neighborhoods). A comprehensive vulnerability assessment encompassed three dimensions: physical vulnerability, social vulnerability, and physical capacity of the built environment. Based on expert evaluations through the AHP method, the relative importance of criteria regarding earthquake vulnerability was revealed. Vulnerability maps for each main dimension were combined in a final vulnerability map of the study area revealing the most vulnerable neighborhoods, which include Çay, Çiçek, Alpaslan, Bayraklı, Muhittin Erener, and Tepekule respectively. The findings showcasing the most influential factors of vulnerability and the most vulnerable regions allow for tailored interventions that can promote strategies to reduce Bayraklı's vulnerability to earthquake hazard.

References

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockström, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036–1039. https://doi.org/10.1126/science.1112122
  • Agliata, R., Bortone, A., & Mollo, L. (2021). Indicator-based approach for the assessment of intrinsic physical vulnerability of the built environment to hydro-meteorological hazards: Review of indicators and example of parameters selection for a sample area. International Journal of Disaster Risk Reduction, 58, Article 102199. https://doi.org/10.1016/j.ijdrr.2021.102199
  • Akurgal, E. (1993). Eski İzmir: Yerleşme katları ve Athena Tapınağı. Türk Tarih Kurumu Yayınları.
  • ArcGIS Resource Center. (2024). Resources. Retrieved at May 18, 2023, from https://www.esri.com/en-us/arcgis/products/arcgis-online/resources
  • Armaș, I. (2012). Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania. Natural Hazards, 63(2), 1129–1156. https://doi.org/10.1007/s11069-012-0209-2
  • Armaș, I., & Gavriș, A. (2013). Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the social vulnerability index (SoVI model) – A case study for Bucharest, Romania. Natural Hazards and Earth System Sciences, 13(6), 1481–1499. https://doi.org/10.5194/nhess-13-1481-2013
  • Askan, A., Gülerce, Z., & Roumelioti, Z. (2022). The Samos Island (Aegean Sea) M7.0 earthquake: analysis and engineering implications of strong motion data. Bulletin of Earthquake Engineering, 20, 7737–7762. https://doi.org/10.1007/s10518-021-01251-5
  • Badmos, B. K., Adenle, A. A., Agodzo, S. K., Villamor, G. B., Asare-Kyei, D. K., Amadou, L. M., & Odai, S. N. (2018). Micro-level social vulnerability assessment towards climate change adaptation in semi-arid Ghana, West Africa. Environment, Development and Sustainability, 20(5), 2261–2279. https://doi.org/10.1007/s10668-017-9988-7
  • Birkmann, J., & Wisner, B. (2006). Measuring the un-measurable: The challenge of vulnerability (UNU-EHS SOURCE No. 5). United Nations University, Institute for Environment and Human Security. http://collections.unu.edu/eserv/UNU:1872/pdf3962.pdf
  • Bollin, C., Cárdenas, C., Hahn, H., & Vatsa, K. S. (2003). Disaster risk management by communities and local governments. Inter-American Development Bank. https://doi.org/10.18235/0008775
  • Cochrane, S. W., & Schaad, W. H. (1992). Assessment of earthquake vulnerability of buildings. In Proceedings of the Tenth World Conference on Earthquake Engineering (Vol. 1, pp. 497–502). A.A. Balkema.
  • Crichton, D. (1999). The risk triangle. In J. Ingleton (Ed.), Natural disaster management (pp. 102–103). Tudor Rose.
  • Crowley, J. (2021). Social vulnerability factors and reported post-disaster needs in the aftermath of Hurricane Florence. International Journal of Disaster Risk Science, 12(1), 13–23. https://doi.org/10.1007/s13753-020-00315-5
  • Cutter, S. L. (1993). Living with risk: The geography of technological hazards. Edward Arnold.
  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000) Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90, 713–37. https://doi.org/10.1111/0004-5608.00219
  • Cutter, S. L. (Ed.). (2001). American hazardscapes: The regionalization of hazards and disasters. Joseph Henry Press. https://doi.org/10.17226/10132
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
  • Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences, 105(7), 2301–2306. https://doi.org/10.1073/pnas.0710375105
  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A Place-based Model for Understanding Community Resilience to Natural Disasters. Global Environmental Change, 18(4), 598–606.
  • Daddoust, L., Khankeh, H. R., Ebadi, A., Sahaf, R., Nakhaei, M., & Asgary, A. (2018). The social vulnerability of older people to natural disasters: An integrative review. Health in Emergencies and Disasters Quarterly, 4(1), 5–14.
  • Davidson, R. A., & Shah, H. C. (1997). An urban earthquake disaster risk index (Technical Report No. 121). The John A. Blume Earthquake Engineering Center, Stanford University. https://doi.org/10.25740/zy159jm6182
  • Dayton-Johnson, J. (2004). Natural disasters and adaptive capacity (OECD Development Centre Working Papers No. 237). OECD Publishing. https://doi.org/10.1787/827805005406
  • Dokuz Eylül University Earthquake Research and Application Center. (2020). 30 October 2020 Samos earthquake (Mw 6.9) evaluation report. https://daum.deu.edu.tr/wp-content/uploads/2020/11/Samos-Deprem-Raporu.pdf
  • Dow, K. (1992). Exploring differences in our common future(s): The meaning of vulnerability to global environmental change. Geoforum, 23(3), 417–436. https://doi.org/10.1016/0016-7185(92)90052-6
  • Duzgun, H. S. B., Yucemen, M. S., Kalaycioglu, H. S., Celik, K., Kemec, S., Ertugay, K., & Deniz, A. (2011). An integrated earthquake vulnerability assessment framework for urban areas. Natural Hazards, 59(2), 917–947.
  • Dwyer, A., Zoppou, C., Nielsen, O., Day, S., & Roberts, S. (2004). Quantifying social vulnerability: A methodology for identifying those at risk to natural hazards (Geoscience Australia Record 2004/14). Geoscience Australia. https://www.ga.gov.au/bigobj/GA4267.pdf
  • Eğilmez, D. B. (2010). İzmir’de kentsel dönüşüm ve dönüştürülemeyen zorunlu yoksulluk halleri. In D. Yıldırım & E. Haspolat (Eds.), Değişen İzmir’i anlamak (pp. 601–638). Phoenix.
  • Engle, N. L. (2011). Adaptive capacity and its assessment. Global Environmental Change, 21(2), 647–656. https://doi.org/10.1016/j.gloenvcha.2011.01.019
  • Farin, F., Ardalan, A., Aguirre, B., Mansouri, N., & Mohammadfam, I. (2017). Social vulnerability indicators in disasters: Findings from a systematic review. International Journal of Disaster Risk Reduction, 22, 219–227.
  • Fischer, T., Alvarez, M., De la Llera, J. C., & Riddell, L. (2002). An integrated model for earthquake risk assessment of buildings. Engineering Structures, 24(7), 979–998. https://doi.org/10.1016/S0141-0296(02)00018-4
  • Forman, E. H., & Gass, S. I. (2001). The analytic hierarchy process—An exposition. Operations Research, 49(4), 469–486. https://doi.org/10.1287/opre.49.4.469.11231
  • Gallopin, G. C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 16(3), 293–303. https://doi.org/10.1016/j.gloenvcha.2006.02.004
  • General Directorate of Mineral Exploration and Research. (2020). 30 October 2020 Aegean Sea earthquake (Mw 6.9): Field observations and evaluation report. Retreived at June 20, 2024, from https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/deprem/ pdf/30.10.2020_ Ege_Denizi_ Depremi_Saha_Gozlemleri_ve_Degerlendirme_Raporu.pdf
  • Gerçek, D., & Güven, İ. T. (2016). Kentsel Dirençliliğin Coğrafi Bilgi Sistemleri Ile Analizi: Deprem ve İzmit Kenti. Harita Teknolojileri Elektronik Dergisi, 8(1), 51-64. https://doi.org/10.15659/hartek.16.04.298
  • Geurs, K. T., & Van Wee, B. (2004). Accessibility Evaluation of Land-use and Transport Strategies: Review and Research Directions. Journal of Transport Geography, 12(2), 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005
  • Han, J., Nur, A., Syifa, M., Ha, M., Lee, C.-W., & Lee, K.-Y. (2021). Improvement of earthquake risk awareness and seismic literacy of Korean citizens through earthquake vulnerability map from the 2017 Pohang earthquake, South Korea. Remote Sensing, 13(7), Article 1365. https://doi.org/10.3390/rs13071365
  • Hassanzadeh, R., Nedović-Budić, Z., Razavi, A. A., Norouzzadeh, M., & Hodhodkian, H. (2013). Interactive approach for GIS-based earthquake scenario development and resource estimation (Karmania hazard model). Computers & Geosciences, 51, 324–338. https://doi.org/10.1016/j.cageo.2012.08.016
  • Hirayama, M., Shinozaki, H., Kasai, N., & Otaki, T. (2018). Comparative risk study of hydrogen and gasoline dispensers for vehicles. International Journal of Hydrogen Energy, 43(27), 12584–12594. https://doi.org/10.1016/j.ijhydene.2018.05.003
  • Hogberg Yilmaz, M. (2020). The urban planning of Istanbul and the provision of green resilient zones in an earthquake-hit metropolitan area: A case study of Istanbul & Avcılar [Bachelor’s thesis, Örebro University].
  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245
  • Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. C. Schulze (Ed.), Engineering within ecological constraints (pp. 31–44). National Academies Press.
  • Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336–14345. https://doi.org/10.1016/j.eswa.2011.04.143
  • İzmir Provincial Disaster and Emergency Management Directorate. (2021). İzmir İl Afet Risk Azaltma Planı (İRAP). Retrieved June 20, 2025, from https://izmir.afad.gov.tr/kurumlar/izmir.afad/E-KUTUPHANE/Il-Planlari/Izmir-IRAP.pdf
  • İzmir Metropolitan Municipality. (2023a). İzmir Earthquake Scenario and Earthquake Master Plan. Retrieved July 15, 2023, from https://www.izmir.bel.tr/izmirdeprem/
  • İzmir Metropolitan Municipality. (2023b). Building Identity Data. Open Data Portal. Retrieved July 15, 2023, from https://acikveri.bizizmir.com/
  • Joshi, G. C., Ghildiyal, S., & Rautela, P. (2019). Seismic vulnerability of lifeline buildings in Himalayan Province of Uttarakhand in India. International Journal of Disaster Risk Reduction, 37, Article 101168. https://doi.org/10.1016/j.ijdrr.2019.101168
  • Kappes, M., & Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 32(2), 577–590. https://doi.org/10.1016/j.apgeog.2011.07.002
  • Karadağ, A., & Mirioğlu, G. (2011). Bayraklı kentsel dönüşüm projesi üzerine coğrafi değerlendirmeler. Türk Coğrafya Dergisi, 57, 21–32. https://doi.org/10.17211/tcd.53573
  • Kircher, C. A., Whitman, R. V., & Holmes, W. T. (2006). HAZUS earthquake loss estimation methods. Natural Hazards Review, 7(2), 45–59. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45)
  • Kusenbach, M., Simms, J. L., & Tobin, G. A. (2010). Disaster vulnerability and evacuation readiness: Coastal mobile home residents in Florida. Natural Hazards, 52(1), 79–95. https://doi.org/10.1007/s11069-009-9358-3
  • Lee, Y. J. (2014). Social vulnerability indicators as a sustainable planning tool. Environmental Impact Assessment Review, 44, 31–42. https://doi.org/10.1016/j.eiar.2013.08.002
  • Lei, Y., Wang, J., Yue, Y., Zhou, H., & Yin, W. (2013). Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Natural Hazards, 70(1), 609–627. https://doi.org/10.1007/s11069-013-0831-7
  • Liu, K. (2020). Post-earthquake medical evacuation system design based on hierarchical multi-objective optimization model: An earthquake case study. International Journal of Disaster Risk Reduction, 51, Article 101785. https://doi.org/10.1016/j.ijdrr.2020.101785
  • Malgwi, M. B., Fuchs, S., & Keiler, M. (2020). A generic physical vulnerability model for floods: Review and concept for data-scarce regions. Natural Hazards and Earth System Sciences, 20(7), 2067–2090. https://doi.org/10.5194/nhess-20-2067-2020
  • Maltais, D. (2019). Elderly people with disabilities and natural disasters: Vulnerability of seniors and post trauma. Gerontology & Geriatric Medicine, 5(4), 1–7. https://doi.org/10.24966/GGM-8662/100041
  • Manyena, S. B. (2006). The concept of resilience revisited. Disasters, 30(4), 433–450. https://doi.org/10.1111/j.0361-3666.2006.00331.x
  • Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani District, Zimbabwe. Geoforum, 86, 103–117. https://doi.org/10.1016/j.geoforum.2017.09.008
  • Mavhura, E. (2019). Systems analysis of vulnerability to hydrometeorological threats: An exploratory study of vulnerability drivers in northern Zimbabwe. International Journal of Disaster Risk Science, 10(2), 204–219. https://doi.org/10.1007/s13753-019-0217-x
  • Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning, 147, 38–49. https://doi.org/10.1016/j.landurbplan.2015.11.011
  • Middle East Technical University. (2020). The october 30, 2020 İzmir-Seferihisar Offshore (Samos) Earthquake (mw=6.6) Reconnaissance Observations and Findings (Report No: METU/EERC 2020-03). Earthquake Engineering Research Center, Middle East Technical University.
  • Miller, F., Osbahr, H., Boyd, E., Thomalla, F., Bharwani, S., Ziervogel, G., Walker, B., Birkmann, J., Van der Leeuw, S., Rockström, J., Hinkel, J., Downing, T., Folke, C., & Nelson, D. (2010). Resilience and vulnerability: Complementary or conflicting concepts? Ecology and Society, 15(3), Article 11. https://doi.org/10.5751/ES-03378-150311
  • No, W., Choi, J., Park, S., & Lee, D. (2020). Balancing hazard exposure and walking distance in evacuation route planning during earthquake disasters. ISPRS International Journal of Geo-Information, 9(7), Article 432. https://doi.org/10.3390/ijgi9070432
  • Notaro, V., De Marchis, M., Fontanazza, C. M., La Loggia, G., Puleo, V., & Freni, G. (2014). The effect of damage functions on urban flood damage appraisal. Procedia Engineering, 70, 1251–1260. https://doi.org/10.1016/j.proeng.2014.02.138
  • Onat, Ö. (2022). Deprem etkisindeki betonarme yapılarda meydana gelen hasarlara dolgu duvar etkisinin incelenmesi: 30 Ekim 2020 İzmir depremi örneği [Yüksek lisans tezi, Isparta Uygulamalı Bilimler Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Onder, Z., Dökmeci, V., & Keskin, B. (2004). The impact of public perception of earthquake risk on Istanbul’s housing market. Journal of Real Estate Literature, 12(2), 181–194. http://www.jstor.org/stable/44103487
  • Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., Wenzel, H., & Dominey-Howes, D. (2007). Elements at risk as a framework for assessing the vulnerability of communities to landslides. Natural Hazards and Earth System Sciences, 7(6), 765–779. https://doi.org/10.5194/nhess-7-765-2007
  • Papathoma-Köhle, M., Schlögl, M., & Fuchs, S. (2019). Vulnerability indicators for natural hazards: An innovative selection and weighting approach. Scientific Reports, 9(1), Article 15026. https://doi.org/10.1038/s41598-019-50257-2
  • Parry, M. L., Carter, T. R., & Konijn, N. T. (Eds.). (1988). The impact of climatic variations on agriculture: Volume 1: Assessment in cool temperate and cold regions. Springer. https://doi.org/10.1007/978-94-009-2943-2
  • Pereira, S., Santos, P. P., Zêzere, J. L., Tavares, A. O., Garcia, R. A. C., & Oliveira, S. C. (2020). A landslide risk index for municipal land use planning in Portugal. Science of the Total Environment, 735, Article 139463. https://doi.org/10.1016/j.scitotenv.2020.139463
  • Rajarathnam, S., & Santhakumar, A. R. (2015). Assessment of seismic building vulnerability based on rapid visual screening technique aided by aerial photographs on a GIS platform. Natural Hazards, 78(2), 779–802. https://doi.org/10.1007/s11069-014-1382-2
  • Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process (2nd ed.). Springer. https://doi.org/10.1007/978-1-4614-3597-6
  • Sarris, A., Loupasakis, C., Soupios, P., Trigkas, V., Vallianatos, F. (2009). Earthquake Vulnerability and Seismic Risk Assessment of Urban Areas in High Seismic Regions: Application to Chania City, Crete Island, Greece. Natural Hazards, 54, 395–412. https://doi.org/10.1007/s11069-009-9475-z
  • Shafapourtehrany, M., Yariyan, P., Özener, H., Pradhan, B., & Shabani, F. (2022). Evaluating the application of K-mean clustering in earthquake vulnerability mapping of Istanbul, Turkey. International Journal of Disaster Risk Reduction, 79, Article 103154. https://doi.org/10.1016/j.ijdrr.2022.103154
  • Siagian, T. H., Purhadi, P., Suhartono, S., & Ritonga, H. (2013). Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Natural Hazards, 70(2), 1603–1617. https://doi.org/10.1007/s11069-013-0888-3
  • Silva, M., & Pereira, S. (2014). Assessment of physical vulnerability and potential losses of buildings due to shallow slides. Natural Hazards, 72(2), 1029–1050. https://doi.org/10.1007/s11069-014-1052-4
  • Singh, A., Kanungo, D. P., & Pal, S. (2019). Physical vulnerability assessment of buildings exposed to landslides in India. Natural Hazards, 96(2), 753–790. https://doi.org/10.1007/s11069-018-03568-y
  • Stephenson, V., & D’Ayala, D. (2014). A new approach to flood vulnerability assessment for historic buildings in England. Natural Hazards and Earth System Sciences, 14(5), 1035–1048. https://doi.org/10.5194/nhess-14-1035-2014
  • Taherdoost, H., & Madanchian, M. (2023). Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia, 3(1), 77–87. https://doi.org/10.3390/encyclopedia3010006
  • Tantala, M. W., Nordenson, J. P., Deodatis, G., & Jacob, K. (2008). Earthquake loss estimation for the New York City metropolitan region. Soil Dynamics and Earthquake Engineering, 28(10), 812–835. https://doi.org/10.1016/j.soildyn.2007.10.012
  • Turkish Statistical Institute. (2019). Address-Based Population Registration System. Retrieved June 20, 2025, from https://nip.tuik.gov.tr/Home/Adnks
  • Turkish Statistical Institute. (2023). Address-Based Population Registration System Results, 2023. Retrieved June 20, 2025, from https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684
  • Turner, B. L., II, Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079. https://doi.org/10.1073/pnas.1231335100
  • Uzielli, M., Catani, F., Tofani, V., & Casagli, N. (2015). Risk analysis for the Ancona landslide—II: Estimation of risk to buildings. Landslides, 12(1), 83–100. https://doi.org/10.1007/s10346-014-0477-x
  • Vogel, C., Moser, S. C., Kasperson, R. E., & Dabelko, G. D. (2007). Linking vulnerability, adaptation, and resilience science to practice: Pathways, players, and partnerships. Global Environmental Change, 17(3), 349–364.
  • Walker, B. B., Taylor-Noonan, C., Tabbernor, A., McKinnon, T., Bal, H., Bradley, D., Schuurman, N., & Clague, J. J. (2014). A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia. Natural Hazards, 74(2), 1209–1222.
  • Wisner, B., Blaikie, P., Cannon, T. and Davis, I. (2004) Earthquakes and Volcanoes. In B. Wisner, P. Blaikie, T. Cannon, & I. Davis (Eds,), At risk: Natural hazards, people’s vulnerability and Disasters (2nd Edition, pp. 274-303). Routledge.
  • Wood, N. J., Burton, C. G., & Cutter, S. L. (2010). Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest. Natural Hazards, 52(2), 369–389. https://doi.org/10.1007/s11069-009-9376-1
  • Yakut, A., Sucuoğlu, H., Binici, B., Canbay, E., Donmez, C., İlki, A., Caner, A., Celik, O. C., & Ay, B. Ö. (2022). Performance of structures in İzmir after the Samos island earthquake. Bulletin of Earthquake Engineering, 20(14), 7793–7818. https://doi.org/10.1007/s10518-021-01226-6
  • Yariyan, P., Avand, M., Soltani, F., Ghorbanzadeh, O., & Blaschke, T. (2020a). Earthquake vulnerability mapping using different hybrid models. Symmetry, 12(3), Article 405. https://doi.org/10.3390/sym12030405
  • Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020b). Earthquake risk assessment using an integrated fuzzy analytic hierarchy process with artificial neural networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, Article 101705. https://doi.org/10.1016/j.ijdrr.2020.101705
  • Young, O. R., Berkhout, F., Gallopín, G. C., Janssen, M., Ostrom, E., & van der Leeuw, S. (2006). The globalization of socio-ecological systems: An agenda for scientific research. Global Environmental Change, 16(3), 304–316.
  • Zhou, H., Wang, J., Wan, J., & Jia, H. (2010). Resilience to natural hazards: A geographic perspective. Natural Hazards, 53(1), 21–41. https://doi.org/10.1007/s11069-009-9407-y
There are 93 citations in total.

Details

Primary Language English
Subjects Natural Hazards
Journal Section Research Article
Authors

Helin Aydın 0009-0006-3317-1959

Deniz Gerçek 0000-0003-4818-9802

Submission Date March 24, 2025
Acceptance Date January 22, 2026
Publication Date January 25, 2026
Published in Issue Year 2026 Volume: 12 Issue: 1

Cite

APA Aydın, H., & Gerçek, D. (2026). Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey. Doğal Afetler Ve Çevre Dergisi, 12(1), 1-32. https://doi.org/10.21324/dacd.1664234
AMA Aydın H, Gerçek D. Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey. J Nat Haz Environ. January 2026;12(1):1-32. doi:10.21324/dacd.1664234
Chicago Aydın, Helin, and Deniz Gerçek. “Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey”. Doğal Afetler Ve Çevre Dergisi 12, no. 1 (January 2026): 1-32. https://doi.org/10.21324/dacd.1664234.
EndNote Aydın H, Gerçek D (January 1, 2026) Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey. Doğal Afetler ve Çevre Dergisi 12 1 1–32.
IEEE H. Aydın and D. Gerçek, “Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey”, J Nat Haz Environ, vol. 12, no. 1, pp. 1–32, 2026, doi: 10.21324/dacd.1664234.
ISNAD Aydın, Helin - Gerçek, Deniz. “Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey”. Doğal Afetler ve Çevre Dergisi 12/1 (January2026), 1-32. https://doi.org/10.21324/dacd.1664234.
JAMA Aydın H, Gerçek D. Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey. J Nat Haz Environ. 2026;12:1–32.
MLA Aydın, Helin and Deniz Gerçek. “Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey”. Doğal Afetler Ve Çevre Dergisi, vol. 12, no. 1, 2026, pp. 1-32, doi:10.21324/dacd.1664234.
Vancouver Aydın H, Gerçek D. Vulnerability Assessment in the Context of Earthquake Resilience: Case Study of Bayraklı, İzmir, Turkey. J Nat Haz Environ. 2026;12(1):1-32.