Research Article
BibTex RIS Cite

Estimation of Suspended Sediment in Dam-impacted Streams Using Regression-based Methods

Year 2026, Volume: 12 Issue: 1, 146 - 158, 25.01.2026
https://doi.org/10.21324/dacd.1740145

Abstract

The estimation of suspended sediment (SS) is a crucial factor for dam reservoirs, river ecosystems, structural changes in water resources, various operational activities, environmental safety, and water management. In this study, classical regression analysis (CRA) and multivariate adaptive regression splines (MARS) methods were used to estimate the mean daily SS (mg/L) of the Patapsco River in the United States. Mean daily discharge (Q), turbidity (T) and SS data from the Catonsville and Elkridge observation stations were used to build the models. For each station, 1199 (65.74%) of the 1824 data recorded between October 2016 and September 2021 were used for training, 300 (16.45%) for validation and 325 (17.81%) for testing datasets. The performance of the developed models was evaluated using the root mean square error, the mean absolute error, and the Nash-Sutcliffe efficiency coefficient statistics. Three different models were developed for estimating SS using Q and T parameters. The model including both Q and T parameters together showed higher estimation performance than the other models at both stations. In addition, the CRA method showed high performance in the training dataset, while the MARS method showed high performance in the validation and testing datasets. It was concluded that the MARS method demonstrated superior estimation performance compared to the CRA method.

References

  • Abed, M. S., Kadhim, F. J., Almusawi, J. K., Imran, H., Bernardo, L. F. A., & Henedy, S. N. (2023). Utilizing multivariate adaptive regression splines (MARS) for precise estimation of soil compaction parameters. Applied Sciences, 13(21), Article 11634. https://doi.org/10.3390/app132111634
  • Achite, M., Yaseen, Z. M., Heddam, S., Malik, A., & Kisi, O. (2022). Advanced machine learning models development for suspended sediment prediction: comparative analysis study. Geocarto International, 37(21), 6116–6140. https://doi.org/10.1080/10106049.2021.1933210
  • Adnan, R. M., Liang, Z., El-Shafie, A., Zounemat-Kermani, M., & Kisi, O. (2019). Prediction of suspended sediment load using data-driven models. Water, 11(10), Article 2060. https://doi.org/10.3390/w11102060
  • Adnan, R., Wang, M., Masood, A., Kisi, O., Shahid, S., & Zounemat-Kermani, M. (2025). Applications of advanced optimized neuro fuzzy models for enhancing daily suspended sediment load prediction. Computer Modeling in Engineering & Sciences, 143(1), Article 1249. https://doi.org/10.32604/cmes.2025.062339
  • Asadi, M. A., Mokhtari, L. G., Zandi, R., & Naemitabar, M. (2025). Modeling, evaluation and forecasting of suspended sediment load in Kal-e Shur River, Sabzevar Basin, in northeast of Iran. Applied Water Science, 15(3), Article 44. https://doi.org/10.1007/s13201-025-02361-0
  • Bayazıt, M. (1981). Hidrolojide istatistik yöntemler. İstanbul Teknik Üniversitesi Matbaası.
  • Bayram, A., Kankal, M., & Onsoy, H. (2012). Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Environmental Monitoring and Assessment, 184(7), 4355–4365. https://doi.org/10.1007/s10661-011-2269-2
  • Cashman, M. J., Gellis, A. C., Boyd, E., Collins, M. J., Anderson, S. W., McFarland, B. D., & Ryan, A. M. (2021). Channel response to a dam‐removal sediment pulse captured at high‐temporal resolution using routine gage data. Earth Surface Processes and Landforms, 46(6), 1145–1159. https://doi.org/10.1002/esp.5083
  • Collins, M. J., Snyder, N. P., Boardman, G., Banks, W. S., Andrews, M., Baker, M. E., & Wilcock, P. (2017). Channel response to sediment release: Insights from a paired analysis of dam removal. Earth Surface Processes and Landforms, 42(11), 1636–1651. https://doi.org/10.1002/esp.4122
  • Collins, M. J., Baker, M. E., Cashman, M. J., Miller, A., & Van Ryswick, S. (2024). Impounded sediment and dam removal: Erosion rates and proximal downstream fate. Earth Surface Processes and Landforms, 49(9), 2690–2703. https://doi.org/10.1002/esp.5850
  • Campos, J. A., & Pedrollo, O. C. (2021). A regional ANN-based model to estimate suspended sediment concentrations in ungauged heterogeneous basins. Hydrological Sciences Journal, 66(7), 1222–1232. https://doi.org/10.1080/02626667.2021.1918695
  • Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., & Agnesi, V. (2016). Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy. Geomorphology, 261, 222–235. https://doi.org/10.1016/j.geomorph.2016.03.006
  • Cui, Y., Collins, M. J., Andrews, M., Boardman, G. C., Wooster, J. K., Melchior, M., & McClain, S. (2019). Comparing 1-D sediment transport modeling with field observations: Simkins Dam removal case study. International Journal of River Basin Management, 17(2), 185–197. https://doi.org/10.1080/15715124.2018.1508024
  • Demirci, M., & Baltaci, A. (2013). Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches. Neural Computing and Applications, 23(1), 145–151. https://doi.org/10.1007/s00521-012-1280-z
  • Dukalang, H. H., & Otok, B. W. (2025). Modified partial least square structural equation model with multivariate adaptive regression spline: Parameter estimation technique and applications. MethodsX, 14, Article 103381. https://doi.org/10.1016/j.mex.2025.103381
  • Essam, Y., Huang, Y. F., Birima, A. H., Al-Hashimi, A., & Zain, M. (2022). Predicting suspended sediment load in Peninsular Malaysia using support vector machine and deep learning algorithms. Scientific Reports, 12, Article 302. https://doi.org/10.1038/s41598-021-04419-w
  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963
  • Friedman, J. H., & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4, 197–217. https://doi.org/10.1177/0962280295004003
  • Halverson, J. B. (2019). Flood City, USA: Ellicott City faces latest historical flooding. Weatherwise, 72(2), 12–18. https://doi.org/10.1080/00431672.2019.1559267
  • Hameed, M., Sharqi, S. S., Yaseen, Z. M., & Al-Ansari, N. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia. Neural Computing and Applications, 28, 893–905. https://doi.org/10.1007/s00521-016-2404-7
  • Huang, C. S., Legett, H. D., Plough, L. V., Aguilar, R., Fitzgerald, C., Gregory, B., Heggie, K., Lee, B., Richie, K. D., Harbold, W., & Ogburn, M. B. (2023). Early detection and recovery of river herring spawning habitat use in response to a mainstem dam removal. PLOS One, 18(5), Article e0284561. https://doi.org/10.1371/journal.pone.0284561
  • Jung, B. M., Fernandes, E. H., Moller Jr, O. O., & Garcia-Rodriguez, F. (2020). Estimating suspended sediment concentrations from river discharge data for reconstructing gaps of information of long-term variability studies. Water, 12(9), Article 2382. https://doi.org/10.3390/w12092382
  • Katatchambo, A. Y., & Bingöl, Ş. (2025). Comparison of regression based functions and ANN models for predicting the compressive strength of geopolymer mortars. Scientific Reports, 15(1), Article 11652. https://doi.org/10.1038/s41598-025-96772-3
  • Kemper, J. T. (2021). Patapsco River, Maryland. https://storymaps.arcgis.com/stories/99fe45668d5843ebb5e784a2da2e7dbd
  • Keshtegar, B., Piri, J., Hussan, W. U., Ikram, K., Yaseen, M., Kisi, O., Adnan, R. M., Adnan, M., & Waseem, M. (2023). Prediction of sediment yields using a data-driven radial M5 tree model. Water, 15(7), Article 1437. https://doi.org/10.3390/w15071437
  • Khan, M. Y. A., Tian, F., Hasan, F., & Chakrapani, G. J. (2019). Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India. International Journal of Sediment Research, 34(2), 95–107. https://doi.org/10.1016/j.ijsrc.2018.09.001
  • Kisi, O., & Zounemat-Kermani, M. (2016). Suspended sediment modeling using neuro-fuzzy embedded fuzzy c-means clustering technique. Water Resources Management, 30, 3979–3994. https://doi.org/10.1007/s11269-016-1405-8
  • Kumantaş, M., Mete, B., Nacar, S., & Bayram, A. (2025). Estimation of suspended sediment concentration using regression analysis: A case study from the Patapsco River Basin, USA. In Y. Kaya, E. K. Oztekin, I. H. Hasan, N. Hasim, S. Oztekin, S. Kosunalp & U. Yildirim (Eds.), Proceedings of the 2nd international conference on engineering, natural sciences, and technological developments (pp. 405–411). Bayburt, Türkiye.
  • Malik, A., Kumar, A., Kisi, O., & Shiri, J. (2019). Evaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modeling. Environmental Science and Pollution Research, 26(22), 22670–22687. https://doi.org/10.1007/s11356-019-05553-9
  • Meshram, S. G., Safari, M. J. S., Khosravi, K., & Meshram, C. (2021). Iterative classifier optimizer-based pace regression and random forest hybrid models for suspended sediment load prediction. Environmental Science and Pollution Research, 28, 11637–11649. https://doi.org/10.1007/s11356-020-11335-5
  • Mete, B., Nacar, S., Bayram, A., & Baki, O. T. (2023). Estimation of total suspended solids concentration in streams using regression and artificial neural networks methods. Journal of Natural Hazards and Environment, 9(1), 125–135. https://doi.org/10.21324/dacd.1133981
  • Mohammadi, B., Guan, Y., Moazenzadeh, R., & Safari, M. J. S. (2021). Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena, 198, Article 105024. https://doi.org/10.1016/j.catena.2020.105024
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • Nacar, S., Kankal, M., & Hınıs, M. A. (2018). Çok değişkenli uyarlanabilir regresyon eğrileri (ÇDURE) ile günlük akarsu akımlarının tahmini-Haldizen Deresi örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 38–47.
  • Nguyen, S. Q., Nguyen, L. C., Ngo-Duc, T., & Ouillon, S. (2024). Applying a machine learning-based method for the prediction of suspended sediment concentration in the Red River Basin. Modeling Earth Systems and Environment, 10(2), 2675–2692. https://doi.org/10.1007/s40808-023-01915-y
  • Parsaie, A., Haghiabi, A. H., Saneie, M., & Torabi, H. (2016). Prediction of energy dissipation on the stepped spillway using the multivariate adaptive regression splines. ISH Journal of Hydraulic Engineering, 22(3), 281–292. https://doi.org/10.1080/09715010.2016.1201782
  • Raja, M. N. A., & Shukla, S. K. (2021). Multivariate adaptive regression splines model for reinforced soil foundations. Geosynthetics International, 28(4), 368–390. https://doi.org/10.1680/jgein.20.00049
  • Sahraei, M. A., Duman, H., Çodur, M. Y., & Eyduran, E. (2021). Prediction of transportation energy demand: Multivariate adaptive regression splines. Energy, 224, Article 120090. https://doi.org/10.1016/j.energy.2021.120090
  • Samantaray, S., & Sahoo, A. (2021). Prediction of suspended sediment concentration using hybrid SVM-WOA approaches. Geocarto International, 37(19), 5609–5635. https://doi.org/10.1080/10106049.2021.1920638
  • Samui, P., & Kothari, D. P. (2012). A multivariate adaptive regression spline approach for prediction of maximum shear modulus and minimum damping ratio. Engineering Journal, 16(5), 69–78. https://doi.org/10.4186/ej.2012.16.5.69
  • Shiri, N., Shiri, J., Nourani, V., & Karimi, S. (2020). Coupling wavelet transform with multivariate adaptive regression spline for simulating suspended sediment load: Independent testing approach. ISH Journal of Hydraulic Engineering, 28(sup1), 356–365. https://doi.org/10.1080/09715010.2020.1801528
  • Steffy, L. Y., & Shank, M. K. (2018). Considerations for using turbidity as a surrogate for suspended sediment in small, ungaged streams: Time‐series selection, streamflow estimation, and regional transferability. River Research and Applications, 34(10), 1304–1314. https://doi.org/10.1002/rra.3373
  • Teixeira, L. C., Mariani, P. P., Pedrollo, O. C., dos Reis Castro, N. M., & Sari, V. (2020). Artificial neural network and fuzzy inference system models for forecasting suspended sediment and turbidity in basins at different scales. Water Resources Management, 34(11), 3709–3723. https://doi.org/10.1007/s11269-020-02647-9
  • Terrain360. (2025). Patapsco River Terrain360 Map Collection, Baltimore’s crown jewel. 19 Ocak 2026’da https://www.terrain360.com/map/patapsco-river/visual#10.7/39.1856/-76.5401 adresinden alındı. Travers, P. (2016). The Patapsco: Baltimore’s river of history. Shiffer Publishing.
  • Van, C. P., Le, H., & Chin, L. V. (2023). Estimation of daily suspended sediment concentration in the Ca River Basin using a sediment rating curve, multiple regression, and long short-term memory model. Journal of Water and Climate Change, 14(12), 4356–4375. https://doi.org/10.2166/wcc.2023.229
  • Wang, Y. M., T. Kerh, & S. (2009). Traore. Neural networks approaches for modelling river suspended sediment concentration due to tropical storms. Global Nest Journal, 11(4), 457–466.
  • Yilmaz, B., Aras, E., Nacar, S., & Kankal, M. (2018). Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models. Science of the Total Environment, 639, 826–840. https://doi.org/10.1016/j.scitotenv.2018.05.153
  • Zabihi, M., Pourghasemi, H. R., Pourtaghi, Z. S., & Behzadfar, M. (2016). GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environmental Earth Sciences, 75(8), Article 665. https://doi.org/10.1007/s12665-016-5424-9

Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini

Year 2026, Volume: 12 Issue: 1, 146 - 158, 25.01.2026
https://doi.org/10.21324/dacd.1740145

Abstract

Askıda katı madde (AKM) tahmini, baraj gölleri, nehir ekosistemleri, su kaynaklarının yapısal değişiklikleri, çeşitli operasyonel faaliyetler, çevre güvenliği ve su yönetimi bakımından oldukça önemlidir. Bu çalışmada Amerika Birleşik Devletleri’ndeki Patapsco Nehri’nin günlük ortalama AKM (mg/L) değerlerini tahmin etmek için klasik regresyon analizi (KRA) ve çok değişkenli uyarlanabilir regresyon eğrileri (ÇDURE) yöntemleri kullanılmıştır. Modelleri oluşturmak için Catonsville ve Elkridge gözlem istasyonlarından alınan günlük ortalama debi (Q), bulanıklık (T) ve AKM verileri kullanılmıştır. Ekim 2016 ile Eylül 2021 dönemini kapsayan 1824 veriden 1199’u eğitim (%65.74), 300’ü doğrulama (%16.45) ve 325’i test (%17.81) seti için kullanılmıştır. Geliştirilen modellerin performansları ortalama karesel hatanın karekökü, ortalama mutlak hata ve Nash-Sutcliffe verimlilik katsayısı istatistikleri kullanılarak değerlendirilmiştir. AKM tahmini için Q ve T parametreleri ile üç farklı model kurulmuştur. Q ve T parametrelerinin birlikte kullanıldığı model diğer modellere kıyasla her iki istasyonda da daha yüksek tahmin performansı göstermiştir. Ayrıca eğitim veri setinde KRA yöntemi, doğrulama ve test veri setlerinde ise ÇDURE yöntemi yüksek performans göstermiştir. ÇDURE yönteminin KRA yöntemine kıyasla daha yüksek tahmin performansı sergilediği sonucuna ulaşılmıştır.

References

  • Abed, M. S., Kadhim, F. J., Almusawi, J. K., Imran, H., Bernardo, L. F. A., & Henedy, S. N. (2023). Utilizing multivariate adaptive regression splines (MARS) for precise estimation of soil compaction parameters. Applied Sciences, 13(21), Article 11634. https://doi.org/10.3390/app132111634
  • Achite, M., Yaseen, Z. M., Heddam, S., Malik, A., & Kisi, O. (2022). Advanced machine learning models development for suspended sediment prediction: comparative analysis study. Geocarto International, 37(21), 6116–6140. https://doi.org/10.1080/10106049.2021.1933210
  • Adnan, R. M., Liang, Z., El-Shafie, A., Zounemat-Kermani, M., & Kisi, O. (2019). Prediction of suspended sediment load using data-driven models. Water, 11(10), Article 2060. https://doi.org/10.3390/w11102060
  • Adnan, R., Wang, M., Masood, A., Kisi, O., Shahid, S., & Zounemat-Kermani, M. (2025). Applications of advanced optimized neuro fuzzy models for enhancing daily suspended sediment load prediction. Computer Modeling in Engineering & Sciences, 143(1), Article 1249. https://doi.org/10.32604/cmes.2025.062339
  • Asadi, M. A., Mokhtari, L. G., Zandi, R., & Naemitabar, M. (2025). Modeling, evaluation and forecasting of suspended sediment load in Kal-e Shur River, Sabzevar Basin, in northeast of Iran. Applied Water Science, 15(3), Article 44. https://doi.org/10.1007/s13201-025-02361-0
  • Bayazıt, M. (1981). Hidrolojide istatistik yöntemler. İstanbul Teknik Üniversitesi Matbaası.
  • Bayram, A., Kankal, M., & Onsoy, H. (2012). Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Environmental Monitoring and Assessment, 184(7), 4355–4365. https://doi.org/10.1007/s10661-011-2269-2
  • Cashman, M. J., Gellis, A. C., Boyd, E., Collins, M. J., Anderson, S. W., McFarland, B. D., & Ryan, A. M. (2021). Channel response to a dam‐removal sediment pulse captured at high‐temporal resolution using routine gage data. Earth Surface Processes and Landforms, 46(6), 1145–1159. https://doi.org/10.1002/esp.5083
  • Collins, M. J., Snyder, N. P., Boardman, G., Banks, W. S., Andrews, M., Baker, M. E., & Wilcock, P. (2017). Channel response to sediment release: Insights from a paired analysis of dam removal. Earth Surface Processes and Landforms, 42(11), 1636–1651. https://doi.org/10.1002/esp.4122
  • Collins, M. J., Baker, M. E., Cashman, M. J., Miller, A., & Van Ryswick, S. (2024). Impounded sediment and dam removal: Erosion rates and proximal downstream fate. Earth Surface Processes and Landforms, 49(9), 2690–2703. https://doi.org/10.1002/esp.5850
  • Campos, J. A., & Pedrollo, O. C. (2021). A regional ANN-based model to estimate suspended sediment concentrations in ungauged heterogeneous basins. Hydrological Sciences Journal, 66(7), 1222–1232. https://doi.org/10.1080/02626667.2021.1918695
  • Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., & Agnesi, V. (2016). Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy. Geomorphology, 261, 222–235. https://doi.org/10.1016/j.geomorph.2016.03.006
  • Cui, Y., Collins, M. J., Andrews, M., Boardman, G. C., Wooster, J. K., Melchior, M., & McClain, S. (2019). Comparing 1-D sediment transport modeling with field observations: Simkins Dam removal case study. International Journal of River Basin Management, 17(2), 185–197. https://doi.org/10.1080/15715124.2018.1508024
  • Demirci, M., & Baltaci, A. (2013). Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches. Neural Computing and Applications, 23(1), 145–151. https://doi.org/10.1007/s00521-012-1280-z
  • Dukalang, H. H., & Otok, B. W. (2025). Modified partial least square structural equation model with multivariate adaptive regression spline: Parameter estimation technique and applications. MethodsX, 14, Article 103381. https://doi.org/10.1016/j.mex.2025.103381
  • Essam, Y., Huang, Y. F., Birima, A. H., Al-Hashimi, A., & Zain, M. (2022). Predicting suspended sediment load in Peninsular Malaysia using support vector machine and deep learning algorithms. Scientific Reports, 12, Article 302. https://doi.org/10.1038/s41598-021-04419-w
  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963
  • Friedman, J. H., & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4, 197–217. https://doi.org/10.1177/0962280295004003
  • Halverson, J. B. (2019). Flood City, USA: Ellicott City faces latest historical flooding. Weatherwise, 72(2), 12–18. https://doi.org/10.1080/00431672.2019.1559267
  • Hameed, M., Sharqi, S. S., Yaseen, Z. M., & Al-Ansari, N. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia. Neural Computing and Applications, 28, 893–905. https://doi.org/10.1007/s00521-016-2404-7
  • Huang, C. S., Legett, H. D., Plough, L. V., Aguilar, R., Fitzgerald, C., Gregory, B., Heggie, K., Lee, B., Richie, K. D., Harbold, W., & Ogburn, M. B. (2023). Early detection and recovery of river herring spawning habitat use in response to a mainstem dam removal. PLOS One, 18(5), Article e0284561. https://doi.org/10.1371/journal.pone.0284561
  • Jung, B. M., Fernandes, E. H., Moller Jr, O. O., & Garcia-Rodriguez, F. (2020). Estimating suspended sediment concentrations from river discharge data for reconstructing gaps of information of long-term variability studies. Water, 12(9), Article 2382. https://doi.org/10.3390/w12092382
  • Katatchambo, A. Y., & Bingöl, Ş. (2025). Comparison of regression based functions and ANN models for predicting the compressive strength of geopolymer mortars. Scientific Reports, 15(1), Article 11652. https://doi.org/10.1038/s41598-025-96772-3
  • Kemper, J. T. (2021). Patapsco River, Maryland. https://storymaps.arcgis.com/stories/99fe45668d5843ebb5e784a2da2e7dbd
  • Keshtegar, B., Piri, J., Hussan, W. U., Ikram, K., Yaseen, M., Kisi, O., Adnan, R. M., Adnan, M., & Waseem, M. (2023). Prediction of sediment yields using a data-driven radial M5 tree model. Water, 15(7), Article 1437. https://doi.org/10.3390/w15071437
  • Khan, M. Y. A., Tian, F., Hasan, F., & Chakrapani, G. J. (2019). Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India. International Journal of Sediment Research, 34(2), 95–107. https://doi.org/10.1016/j.ijsrc.2018.09.001
  • Kisi, O., & Zounemat-Kermani, M. (2016). Suspended sediment modeling using neuro-fuzzy embedded fuzzy c-means clustering technique. Water Resources Management, 30, 3979–3994. https://doi.org/10.1007/s11269-016-1405-8
  • Kumantaş, M., Mete, B., Nacar, S., & Bayram, A. (2025). Estimation of suspended sediment concentration using regression analysis: A case study from the Patapsco River Basin, USA. In Y. Kaya, E. K. Oztekin, I. H. Hasan, N. Hasim, S. Oztekin, S. Kosunalp & U. Yildirim (Eds.), Proceedings of the 2nd international conference on engineering, natural sciences, and technological developments (pp. 405–411). Bayburt, Türkiye.
  • Malik, A., Kumar, A., Kisi, O., & Shiri, J. (2019). Evaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modeling. Environmental Science and Pollution Research, 26(22), 22670–22687. https://doi.org/10.1007/s11356-019-05553-9
  • Meshram, S. G., Safari, M. J. S., Khosravi, K., & Meshram, C. (2021). Iterative classifier optimizer-based pace regression and random forest hybrid models for suspended sediment load prediction. Environmental Science and Pollution Research, 28, 11637–11649. https://doi.org/10.1007/s11356-020-11335-5
  • Mete, B., Nacar, S., Bayram, A., & Baki, O. T. (2023). Estimation of total suspended solids concentration in streams using regression and artificial neural networks methods. Journal of Natural Hazards and Environment, 9(1), 125–135. https://doi.org/10.21324/dacd.1133981
  • Mohammadi, B., Guan, Y., Moazenzadeh, R., & Safari, M. J. S. (2021). Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena, 198, Article 105024. https://doi.org/10.1016/j.catena.2020.105024
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • Nacar, S., Kankal, M., & Hınıs, M. A. (2018). Çok değişkenli uyarlanabilir regresyon eğrileri (ÇDURE) ile günlük akarsu akımlarının tahmini-Haldizen Deresi örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 38–47.
  • Nguyen, S. Q., Nguyen, L. C., Ngo-Duc, T., & Ouillon, S. (2024). Applying a machine learning-based method for the prediction of suspended sediment concentration in the Red River Basin. Modeling Earth Systems and Environment, 10(2), 2675–2692. https://doi.org/10.1007/s40808-023-01915-y
  • Parsaie, A., Haghiabi, A. H., Saneie, M., & Torabi, H. (2016). Prediction of energy dissipation on the stepped spillway using the multivariate adaptive regression splines. ISH Journal of Hydraulic Engineering, 22(3), 281–292. https://doi.org/10.1080/09715010.2016.1201782
  • Raja, M. N. A., & Shukla, S. K. (2021). Multivariate adaptive regression splines model for reinforced soil foundations. Geosynthetics International, 28(4), 368–390. https://doi.org/10.1680/jgein.20.00049
  • Sahraei, M. A., Duman, H., Çodur, M. Y., & Eyduran, E. (2021). Prediction of transportation energy demand: Multivariate adaptive regression splines. Energy, 224, Article 120090. https://doi.org/10.1016/j.energy.2021.120090
  • Samantaray, S., & Sahoo, A. (2021). Prediction of suspended sediment concentration using hybrid SVM-WOA approaches. Geocarto International, 37(19), 5609–5635. https://doi.org/10.1080/10106049.2021.1920638
  • Samui, P., & Kothari, D. P. (2012). A multivariate adaptive regression spline approach for prediction of maximum shear modulus and minimum damping ratio. Engineering Journal, 16(5), 69–78. https://doi.org/10.4186/ej.2012.16.5.69
  • Shiri, N., Shiri, J., Nourani, V., & Karimi, S. (2020). Coupling wavelet transform with multivariate adaptive regression spline for simulating suspended sediment load: Independent testing approach. ISH Journal of Hydraulic Engineering, 28(sup1), 356–365. https://doi.org/10.1080/09715010.2020.1801528
  • Steffy, L. Y., & Shank, M. K. (2018). Considerations for using turbidity as a surrogate for suspended sediment in small, ungaged streams: Time‐series selection, streamflow estimation, and regional transferability. River Research and Applications, 34(10), 1304–1314. https://doi.org/10.1002/rra.3373
  • Teixeira, L. C., Mariani, P. P., Pedrollo, O. C., dos Reis Castro, N. M., & Sari, V. (2020). Artificial neural network and fuzzy inference system models for forecasting suspended sediment and turbidity in basins at different scales. Water Resources Management, 34(11), 3709–3723. https://doi.org/10.1007/s11269-020-02647-9
  • Terrain360. (2025). Patapsco River Terrain360 Map Collection, Baltimore’s crown jewel. 19 Ocak 2026’da https://www.terrain360.com/map/patapsco-river/visual#10.7/39.1856/-76.5401 adresinden alındı. Travers, P. (2016). The Patapsco: Baltimore’s river of history. Shiffer Publishing.
  • Van, C. P., Le, H., & Chin, L. V. (2023). Estimation of daily suspended sediment concentration in the Ca River Basin using a sediment rating curve, multiple regression, and long short-term memory model. Journal of Water and Climate Change, 14(12), 4356–4375. https://doi.org/10.2166/wcc.2023.229
  • Wang, Y. M., T. Kerh, & S. (2009). Traore. Neural networks approaches for modelling river suspended sediment concentration due to tropical storms. Global Nest Journal, 11(4), 457–466.
  • Yilmaz, B., Aras, E., Nacar, S., & Kankal, M. (2018). Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models. Science of the Total Environment, 639, 826–840. https://doi.org/10.1016/j.scitotenv.2018.05.153
  • Zabihi, M., Pourghasemi, H. R., Pourtaghi, Z. S., & Behzadfar, M. (2016). GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environmental Earth Sciences, 75(8), Article 665. https://doi.org/10.1007/s12665-016-5424-9
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Research Article
Authors

Mahir Kumantaş 0009-0002-7979-7640

Betül Mete 0000-0002-3689-6430

Sinan Nacar 0000-0003-2497-5032

Adem Bayram 0000-0003-4359-9183

Submission Date July 11, 2025
Acceptance Date October 5, 2025
Publication Date January 25, 2026
Published in Issue Year 2026 Volume: 12 Issue: 1

Cite

APA Kumantaş, M., Mete, B., Nacar, S., Bayram, A. (2026). Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini. Doğal Afetler Ve Çevre Dergisi, 12(1), 146-158. https://doi.org/10.21324/dacd.1740145
AMA Kumantaş M, Mete B, Nacar S, Bayram A. Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini. J Nat Haz Environ. January 2026;12(1):146-158. doi:10.21324/dacd.1740145
Chicago Kumantaş, Mahir, Betül Mete, Sinan Nacar, and Adem Bayram. “Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini”. Doğal Afetler Ve Çevre Dergisi 12, no. 1 (January 2026): 146-58. https://doi.org/10.21324/dacd.1740145.
EndNote Kumantaş M, Mete B, Nacar S, Bayram A (January 1, 2026) Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini. Doğal Afetler ve Çevre Dergisi 12 1 146–158.
IEEE M. Kumantaş, B. Mete, S. Nacar, and A. Bayram, “Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini”, J Nat Haz Environ, vol. 12, no. 1, pp. 146–158, 2026, doi: 10.21324/dacd.1740145.
ISNAD Kumantaş, Mahir et al. “Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini”. Doğal Afetler ve Çevre Dergisi 12/1 (January2026), 146-158. https://doi.org/10.21324/dacd.1740145.
JAMA Kumantaş M, Mete B, Nacar S, Bayram A. Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini. J Nat Haz Environ. 2026;12:146–158.
MLA Kumantaş, Mahir et al. “Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini”. Doğal Afetler Ve Çevre Dergisi, vol. 12, no. 1, 2026, pp. 146-58, doi:10.21324/dacd.1740145.
Vancouver Kumantaş M, Mete B, Nacar S, Bayram A. Regresyon Tabanlı Yöntemler Kullanılarak Baraj Etkisindeki Akarsularda Askıda Katı Madde Tahmini. J Nat Haz Environ. 2026;12(1):146-58.