Research Article
BibTex RIS Cite

Strength Properties of Low Plasticity Clayey Soils Improved with Marble Dust and Scrap Tire

Year 2018, Volume: 4 Issue: 2, 162 - 170, 12.06.2018
https://doi.org/10.21324/dacd.412489
https://izlik.org/JA32RS35ZA

Abstract

Climatic changes negatively affect geotechnical and technological properties of engineering structures (especially as basic and substructure material). Various studies have been made towards decreasing this negative situation by mixing different additives in cohesive soil. In this study, the changes in strength of low plasticity red clayey soil improved with marble dust and scrap tire pieces were examined. Strength values of red clayey soil samples with the addition of 0.5%, 1%, 2% scrap tire pieces and 5%, 10%, 15%, 20% marble dust were determined on 0 (3h), 1, 7, 28 days and at +21oC. Out of these data, it was detected that the highest strength values were the red clay sample modified by adding 0.5% (2.00 mm) scrap tires and 5% marble dust after 28 days’ cure. This mixture was subjected to the freeze-thaw test. As a result, it was found that the strength of the improved clay unit and the main material reinforced with the addition of 0.5% (2.00 mm) waste tire and 5% marble dust were decreased by 5.1% and 28.7%, respectively. The resistance of the clayey soil reinforced with marble dust and waste tire pieces was significantly improved when compared to the main material.

References

  • Akbulut S., Arasan S., Kalkan E., (2007), Modification of Clayey Soils Using Scrap Tire Rubber and Synthetic Fibers, Applied Clay Science, 38, 23–32.
  • Chauhan M.S., Mittal S., Mohanty B., (2008), Performance Evaluation of Silty Sand Subgrade Reinforced with Fly Ash and Fibre, Journal of Geotextiles and Geomembranes, 26(5), 429–435.
  • Consoli N.C., Vendruscolo M.A., Fonini A., Rosa F.D., (2009), Fiber Reinforcement Effects on Sand Considering a Wide Cementation Range, Journal of Geotextiles and Geomembranes, 27(3), 196–203.
  • Demir İ., Başpınar M.S., Görhan G., Kahraman E., (2008), Mermer Tozu ve Atıklarının Kullanım Alanlarının Araştırılması, 6. Mermer ve Doğaltaş Sempozyumu, 26-27 Haziran, Afyonkarahisar.
  • Ghazavi M., Roustaie M., (2010), The Influence of Freeze-thaw Cycles on the Unconfined Compressive Strength of Fiber-reinforced Clay, Cold Regions Science and Technology, 61, 125-131.
  • Gullu H., Hazirbaba K., (2010), Unconfined Compressive Strength and Post-Freeze-Thaw Behavior of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid, Cold Regions Science and Technology, 62, 142-150.
  • Hejazi S.M., Sheikhzadeh M., Abtahi S.M., Zadhoush A., (2012), A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers, Construction and Building Materials, 30, 100-116.
  • Jafari M., Esna-Ashari M., (2012), Effect of Waste Tire Cord Reinforcement on Unconfined Compressive Strength of Lime Stabilized Clayey Soil Under Freeze–Thaw Condition, Cold Regions Science and Technology, 82, 21–29.
  • Kalkan E., (2009), Effects of Silica Fume on The Geotechnical Properties of Fine-Grained Soils Exposed to Freeze And Thaw, Cold Regions Science and Technology, 58(3), 130-135.
  • Kalkan E., (2013), Prepartion of Scrap Tires Ruber Fiber-Silica Fume Mixtures for Modification of Clayey Soils, Applied Clay Science, 80-81, 117-125.
  • Okagbue C.O., Onyeobi T.U.S., (1999), Potential of Marble Dust to Stabilise Red Tropical Soils for Road Construction, Engineering Geology, 53, 371-380.
  • Osula D.O.A., (1991), Lime Modification of Problem Laterites, Engineering Geology, 30, 141–153.
  • Park S.S., (2009), Effect of Fiber Reinforcement and Distribution on Unconfined Compressive Strength of Fiber-reinforced Cemented Sand, Journal of Geotextiles and Geomembranes, 27(2), 162–166.
  • Singh P., Bawa S., Priyadarshee A., Kumar G., (2016), Influence of Tire Chips on The Behaviour of Soil, Journal of Civil Engineering and Environmental Technolgy, 3(1), 23-27.
  • Yarbaşı N., Kalkan E., Akbulut S., (2007), Modification of the Geotechnical Properties, as Influenced by Freze-Thaw, of Granular Soils with Waste Additives, Cold Regions Science and Technology, 48, 44-54.
  • Yarbaşı N., (2016), Atık Lastik Parçalarıyla Güçlendirilmiş Killi Zeminlerin Donma-Çözülme Davranışı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 559-562.
  • Zaimoglu A.S., (2010), Freezing-thawing Behavior of Fine-grained Soils Reinforced with Polypropylene Fibers, Cold Regions Science and Technology, 60, 63-65.
  • Zorluer l., Demirbas A., (2013), Use of Marble Dust and Fly Ash in Stabilization of Base Material, Science and Engineering of Composite Materials, 20(1), 47-55.

Mermer Tozu ve Atık Lastik ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri

Year 2018, Volume: 4 Issue: 2, 162 - 170, 12.06.2018
https://doi.org/10.21324/dacd.412489
https://izlik.org/JA32RS35ZA

Abstract

İklimsel değişiklikler, mühendislik yapılarının
(özellikle temel ve alt temel malzemesi olarak) geoteknik ve teknolojik
özelliklerini olumsuz olarak etkilemektedir. Bu olumsuz durumun kohezyonlu
zeminlerde çeşitli katkılar karıştırılarak azaltılması yönünde çeşitli
çalışmalar yapılmaktadır. Bu çalışmada, mermer tozu ve atık lastik parçalarıyla
iyileştirilmiş düşük plastisiteli kırmızı killi birimin dayanımındaki
değişimler incelenmiştir. Kırmızı kil birimine 
% 0.5, % 1, % 2 atık lastik ve 
%5, %10, %15, %20 mermer tozu ilave edilerek 0 (3 saat), 1, 7, 28 gün ve
+21oC’deki dayanımları belirlenmiştir. Bu verilerden 28 günlük kür
sonrası %0.5 (2.00 mm) atık lastik ve %5 mermer tozu katkısıyla iyileştirilen
killi birimin en yüksek dayanım değeri verdiği belirlenmiştir. Bu karışıma
donma-çözülme deneyi uygulanmıştır. Sonuçta, %0.5 atık lastik (2.00 mm) ve %5 mermer
tozu ile iyileştirilen killi birimin dayanımında %5.1, ana malzeme olan kilde
ise %28.7 oranında azalma meydana gelmiştir. Mermer tozu ve atık lastik
parçaları ile iyileştirilen killi zeminin dayanımında, ana malzeme ile mukayese
edildiğinde belirgin bir iyileşme sağlanmıştır.

References

  • Akbulut S., Arasan S., Kalkan E., (2007), Modification of Clayey Soils Using Scrap Tire Rubber and Synthetic Fibers, Applied Clay Science, 38, 23–32.
  • Chauhan M.S., Mittal S., Mohanty B., (2008), Performance Evaluation of Silty Sand Subgrade Reinforced with Fly Ash and Fibre, Journal of Geotextiles and Geomembranes, 26(5), 429–435.
  • Consoli N.C., Vendruscolo M.A., Fonini A., Rosa F.D., (2009), Fiber Reinforcement Effects on Sand Considering a Wide Cementation Range, Journal of Geotextiles and Geomembranes, 27(3), 196–203.
  • Demir İ., Başpınar M.S., Görhan G., Kahraman E., (2008), Mermer Tozu ve Atıklarının Kullanım Alanlarının Araştırılması, 6. Mermer ve Doğaltaş Sempozyumu, 26-27 Haziran, Afyonkarahisar.
  • Ghazavi M., Roustaie M., (2010), The Influence of Freeze-thaw Cycles on the Unconfined Compressive Strength of Fiber-reinforced Clay, Cold Regions Science and Technology, 61, 125-131.
  • Gullu H., Hazirbaba K., (2010), Unconfined Compressive Strength and Post-Freeze-Thaw Behavior of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid, Cold Regions Science and Technology, 62, 142-150.
  • Hejazi S.M., Sheikhzadeh M., Abtahi S.M., Zadhoush A., (2012), A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers, Construction and Building Materials, 30, 100-116.
  • Jafari M., Esna-Ashari M., (2012), Effect of Waste Tire Cord Reinforcement on Unconfined Compressive Strength of Lime Stabilized Clayey Soil Under Freeze–Thaw Condition, Cold Regions Science and Technology, 82, 21–29.
  • Kalkan E., (2009), Effects of Silica Fume on The Geotechnical Properties of Fine-Grained Soils Exposed to Freeze And Thaw, Cold Regions Science and Technology, 58(3), 130-135.
  • Kalkan E., (2013), Prepartion of Scrap Tires Ruber Fiber-Silica Fume Mixtures for Modification of Clayey Soils, Applied Clay Science, 80-81, 117-125.
  • Okagbue C.O., Onyeobi T.U.S., (1999), Potential of Marble Dust to Stabilise Red Tropical Soils for Road Construction, Engineering Geology, 53, 371-380.
  • Osula D.O.A., (1991), Lime Modification of Problem Laterites, Engineering Geology, 30, 141–153.
  • Park S.S., (2009), Effect of Fiber Reinforcement and Distribution on Unconfined Compressive Strength of Fiber-reinforced Cemented Sand, Journal of Geotextiles and Geomembranes, 27(2), 162–166.
  • Singh P., Bawa S., Priyadarshee A., Kumar G., (2016), Influence of Tire Chips on The Behaviour of Soil, Journal of Civil Engineering and Environmental Technolgy, 3(1), 23-27.
  • Yarbaşı N., Kalkan E., Akbulut S., (2007), Modification of the Geotechnical Properties, as Influenced by Freze-Thaw, of Granular Soils with Waste Additives, Cold Regions Science and Technology, 48, 44-54.
  • Yarbaşı N., (2016), Atık Lastik Parçalarıyla Güçlendirilmiş Killi Zeminlerin Donma-Çözülme Davranışı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 559-562.
  • Zaimoglu A.S., (2010), Freezing-thawing Behavior of Fine-grained Soils Reinforced with Polypropylene Fibers, Cold Regions Science and Technology, 60, 63-65.
  • Zorluer l., Demirbas A., (2013), Use of Marble Dust and Fly Ash in Stabilization of Base Material, Science and Engineering of Composite Materials, 20(1), 47-55.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Necmi Yarbaşı 0000-0003-4259-1278

Submission Date April 4, 2018
Acceptance Date June 4, 2018
Publication Date June 12, 2018
DOI https://doi.org/10.21324/dacd.412489
IZ https://izlik.org/JA32RS35ZA
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Yarbaşı, N. (2018). Mermer Tozu ve Atık Lastik ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri. Doğal Afetler Ve Çevre Dergisi, 4(2), 162-170. https://doi.org/10.21324/dacd.412489
AMA 1.Yarbaşı N. Mermer Tozu ve Atık Lastik ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri. J Nat Haz Environ. 2018;4(2):162-170. doi:10.21324/dacd.412489
Chicago Yarbaşı, Necmi. 2018. “Mermer Tozu Ve Atık Lastik Ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri”. Doğal Afetler Ve Çevre Dergisi 4 (2): 162-70. https://doi.org/10.21324/dacd.412489.
EndNote Yarbaşı N (July 1, 2018) Mermer Tozu ve Atık Lastik ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri. Doğal Afetler ve Çevre Dergisi 4 2 162–170.
IEEE [1]N. Yarbaşı, “Mermer Tozu ve Atık Lastik ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri”, J Nat Haz Environ, vol. 4, no. 2, pp. 162–170, July 2018, doi: 10.21324/dacd.412489.
ISNAD Yarbaşı, Necmi. “Mermer Tozu Ve Atık Lastik Ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri”. Doğal Afetler ve Çevre Dergisi 4/2 (July 1, 2018): 162-170. https://doi.org/10.21324/dacd.412489.
JAMA 1.Yarbaşı N. Mermer Tozu ve Atık Lastik ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri. J Nat Haz Environ. 2018;4:162–170.
MLA Yarbaşı, Necmi. “Mermer Tozu Ve Atık Lastik Ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri”. Doğal Afetler Ve Çevre Dergisi, vol. 4, no. 2, July 2018, pp. 162-70, doi:10.21324/dacd.412489.
Vancouver 1.Yarbaşı N. Mermer Tozu ve Atık Lastik ile İyileştirilen Düşük Plastisiteli Killi Zeminlerin Dayanım Özellikleri. J Nat Haz Environ [Internet]. 2018 July 1;4(2):162-70. Available from: https://izlik.org/JA32RS35ZA