Clinical Research
BibTex RIS Cite

Year 2025, Volume: 39 Issue: 3, 153 - 163, 25.07.2025
https://doi.org/10.18614/dehm.1751044

Abstract

References

  • 1. Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Molecular metabolism. 2023 Sep;75:101771.
  • 2. Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, et al. Molecular targeting therapies for neuroblastoma: Progress and challenges. Medicinal Research Reviews [Internet]. 2021;41(2):961–1021. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/med.21750
  • 3. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harbor perspectives in medicine. 2013 Oct;3(10):a014415.
  • 4. Connolly RM, Nguyen NK, Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013 Apr;19(7):1651–9.
  • 5. Bayeva N, Coll E, Piskareva O. Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. Journal of personalized medicine. 2021 Mar;11(3).
  • 6. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nature genetics. 2013 Mar;45(3):279–84.
  • 7. Oyouni AAA, Saggu S, Tousson E, Rehman H. Immunosuppressant drug tacrolimus induced mitochondrial nephrotoxicity, modified PCNA and Bcl-2 expression attenuated by Ocimum basilicum L. in CD1 mice. Toxicology Reports [Internet]. 2018;5:687–94. Available from: https://www.sciencedirect.com/science/article/pii/S2214750018301069
  • 8. Siamakpour-Reihani S, Caster J, Bandhu Nepal D, Courtwright A, Hilliard E, Usary J, et al. The Role of Calcineurin/NFAT in SFRP2 Induced Angiogenesis—A Rationale for Breast Cancer Treatment with the Calcineurin Inhibitor Tacrolimus. PLOS ONE [Internet]. 2011 Jun 3;6(6):e20412. Available from: https://doi.org/10.1371/journal.pone.0020412
  • 9. Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, et al. Targeting RAS in neuroblastoma: Is it possible? Pharmacology & Therapeutics [Internet]. 2022;236:108054. Available from: https://www.sciencedirect.com/science/article/pii/S0163725821002564
  • 10. Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Frontiers in Cell and Developmental Biology. 2023;11(August):1–18.
  • 11. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et biophysica acta. 2010 Apr;1802(4):396–405.
  • 12. Tolbert VP, Matthay KK. Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell and tissue research. 2018 May;372(2):195–209.
  • 13. Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine. Pediatric clinics of North America. 2015 Feb;62(1):225–56.
  • 14. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nature reviews Disease primers. 2016 Nov;2:16078.
  • 15. Zimmerman MW, Durbin AD, He S, Oppel F, Shi H, Tao T, et al. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Science advances. 2021 Oct;7(43):eabe0834.
  • 16. Lampis S, Raieli S, Montemurro L, Bartolucci D, Amadesi C, Bortolotti S, et al. The MYCN inhibitor BGA002 restores the retinoic acid response leading to differentiation or apoptosis by the mTOR block in MYCN-amplified neuroblastoma. Journal of Experimental & Clinical Cancer Research [Internet]. 2022;41(1):160. Available from: https://doi.org/10.1186/s13046-022-02367-5
  • 17. Guglielmi L, Cinnella C, Nardella M, Maresca G, Valentini A, Mercanti D, et al. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death and Disease. 2014;5(2).
  • 18. Ando K, Ohira M, Takada I, Cázares-Ordoñez V, Suenaga Y, Nagase H, et al. FGFR2 loss sensitizes MYCN-amplified neuroblastoma CHP134 cells to CHK1 inhibitor-induced apoptosis. Cancer science. 2022 Feb;113(2):587–96.
  • 19. Aktas S, Ercetin AP, Kolatan E. Effect of Tacrolimus in Triple Negative Breast Cancer Animal Model. International Journal of Clinical and Experimental Medicine Research. 2021;5(3):269–77.
  • 20. Lancia P, Jacqz-Aigrain E, Zhao W. Choosing the right dose of tacrolimus. Archives of disease in childhood. 2015 Apr;100(4):406–13.
  • 21. van Hooff JP, Christiaans MHL, van Duijnhoven EM. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. Transplantation. 2005 Jun;79(11):1465–9.
  • 22. Tong L, Li W, Zhang Y, Zhou F, Zhao Y, Zhao L, et al. Tacrolimus inhibits insulin release and promotes apoptosis of Min6 cells through the inhibition of the PI3K/Akt/mTOR pathway. Molecular Medicine Reports. 2021;24(3).
  • 23. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling [Internet]. 2002;14(5):381–95. Available from: https://www.sciencedirect.com/science/article/pii/S0898656801002716
  • 24. Eleveld TF, Schild L, Koster J, Zwijnenburg DA, Alles LK, Ebus ME, et al. RAS–MAPK Pathway-Driven Tumor Progression Is Associated with Loss of CIC and Other Genomic Aberrations in Neuroblastoma. Cancer Research [Internet]. 2018 Nov 1;78(21):6297–307. Available from: https://doi.org/10.1158/0008-5472.CAN-18-1045
  • 25. Flamigni F, Facchini A, Capanni C, Stefanelli C, Tantini B, Caldarera CM. ornithine decarboxylase in leukaemia L1210 cells. 1999;369:363–9.
  • 26. Antonyak MA, McNeill CJ, Wakshlag JJ, Boehm JE, Cerione RA. Activation of the Ras-ERK pathway inhibits retinoic acid-induced stimulation of tissue transglutaminase expression in NIH3T3 cells. Journal of Biological Chemistry [Internet]. 2003;278(18):15859–66. Available from: http://dx.doi.org/10.1074/jbc.M300037200
  • 27. Qiao J, Paul P, Lee S, Qiao L, Josifi E, Tiao JR, et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and biophysical research communications. 2012 Aug;424(3):421–6.

Anti-Cancer treatments affecting PI3K/Akt/Mtor and Ras/MAPK pathways in neuroblastoma

Year 2025, Volume: 39 Issue: 3, 153 - 163, 25.07.2025
https://doi.org/10.18614/dehm.1751044

Abstract

BACKGROUND
In this study, we applied combination therapy of RA and Tac to NB cells with different molecular properties and aimed to evaluate its effects on proliferation, differentiation, and apoptotic pathways in NB.

METHODS
Four cell lines of different characteristics; (KELLY, LAN-5, CHP-134, and SHSY5Y) were cultured and treated with various doses of RA and Tac. The IC50 values were determined by through WST analysis. The IC50 of the RA+Tac combination was applied to the cells. To determine the apoptosis/necrosis rate, the cells were dyed with Annexin V/PI. To examine the protein levels of certain pathways, Western Blot and IHC were performed.

RESULTS
The RA and RA+Tac treatments demonstrated beneficial effects in all the NB cell lines. The combination of RA+Tac treatments is relatively more efficient than RA in promoting apoptosis, inhibiting proliferation, and decreasing the expression levels of signal pathway proteins (p < 0.05). Only the Tac treatment did not have a significant effect on the NB cells. In low doses and in combination with RA, Tac was found to be effective on cells.

CONCLUSION
In summary, the NB cells differentiated with the RA treatment were more responsive when RA+Tac was administered. Tac exhibited a synergistic effect combined with RA and affected the crucial signal pathway proteins. Our studies lead to a more comprehensive study of the combination of RA and Tac.

References

  • 1. Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Molecular metabolism. 2023 Sep;75:101771.
  • 2. Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, et al. Molecular targeting therapies for neuroblastoma: Progress and challenges. Medicinal Research Reviews [Internet]. 2021;41(2):961–1021. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/med.21750
  • 3. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harbor perspectives in medicine. 2013 Oct;3(10):a014415.
  • 4. Connolly RM, Nguyen NK, Sukumar S. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013 Apr;19(7):1651–9.
  • 5. Bayeva N, Coll E, Piskareva O. Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. Journal of personalized medicine. 2021 Mar;11(3).
  • 6. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nature genetics. 2013 Mar;45(3):279–84.
  • 7. Oyouni AAA, Saggu S, Tousson E, Rehman H. Immunosuppressant drug tacrolimus induced mitochondrial nephrotoxicity, modified PCNA and Bcl-2 expression attenuated by Ocimum basilicum L. in CD1 mice. Toxicology Reports [Internet]. 2018;5:687–94. Available from: https://www.sciencedirect.com/science/article/pii/S2214750018301069
  • 8. Siamakpour-Reihani S, Caster J, Bandhu Nepal D, Courtwright A, Hilliard E, Usary J, et al. The Role of Calcineurin/NFAT in SFRP2 Induced Angiogenesis—A Rationale for Breast Cancer Treatment with the Calcineurin Inhibitor Tacrolimus. PLOS ONE [Internet]. 2011 Jun 3;6(6):e20412. Available from: https://doi.org/10.1371/journal.pone.0020412
  • 9. Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, et al. Targeting RAS in neuroblastoma: Is it possible? Pharmacology & Therapeutics [Internet]. 2022;236:108054. Available from: https://www.sciencedirect.com/science/article/pii/S0163725821002564
  • 10. Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Frontiers in Cell and Developmental Biology. 2023;11(August):1–18.
  • 11. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et biophysica acta. 2010 Apr;1802(4):396–405.
  • 12. Tolbert VP, Matthay KK. Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell and tissue research. 2018 May;372(2):195–209.
  • 13. Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine. Pediatric clinics of North America. 2015 Feb;62(1):225–56.
  • 14. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nature reviews Disease primers. 2016 Nov;2:16078.
  • 15. Zimmerman MW, Durbin AD, He S, Oppel F, Shi H, Tao T, et al. Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Science advances. 2021 Oct;7(43):eabe0834.
  • 16. Lampis S, Raieli S, Montemurro L, Bartolucci D, Amadesi C, Bortolotti S, et al. The MYCN inhibitor BGA002 restores the retinoic acid response leading to differentiation or apoptosis by the mTOR block in MYCN-amplified neuroblastoma. Journal of Experimental & Clinical Cancer Research [Internet]. 2022;41(1):160. Available from: https://doi.org/10.1186/s13046-022-02367-5
  • 17. Guglielmi L, Cinnella C, Nardella M, Maresca G, Valentini A, Mercanti D, et al. MYCN gene expression is required for the onset of the differentiation programme in neuroblastoma cells. Cell Death and Disease. 2014;5(2).
  • 18. Ando K, Ohira M, Takada I, Cázares-Ordoñez V, Suenaga Y, Nagase H, et al. FGFR2 loss sensitizes MYCN-amplified neuroblastoma CHP134 cells to CHK1 inhibitor-induced apoptosis. Cancer science. 2022 Feb;113(2):587–96.
  • 19. Aktas S, Ercetin AP, Kolatan E. Effect of Tacrolimus in Triple Negative Breast Cancer Animal Model. International Journal of Clinical and Experimental Medicine Research. 2021;5(3):269–77.
  • 20. Lancia P, Jacqz-Aigrain E, Zhao W. Choosing the right dose of tacrolimus. Archives of disease in childhood. 2015 Apr;100(4):406–13.
  • 21. van Hooff JP, Christiaans MHL, van Duijnhoven EM. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. Transplantation. 2005 Jun;79(11):1465–9.
  • 22. Tong L, Li W, Zhang Y, Zhou F, Zhao Y, Zhao L, et al. Tacrolimus inhibits insulin release and promotes apoptosis of Min6 cells through the inhibition of the PI3K/Akt/mTOR pathway. Molecular Medicine Reports. 2021;24(3).
  • 23. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling [Internet]. 2002;14(5):381–95. Available from: https://www.sciencedirect.com/science/article/pii/S0898656801002716
  • 24. Eleveld TF, Schild L, Koster J, Zwijnenburg DA, Alles LK, Ebus ME, et al. RAS–MAPK Pathway-Driven Tumor Progression Is Associated with Loss of CIC and Other Genomic Aberrations in Neuroblastoma. Cancer Research [Internet]. 2018 Nov 1;78(21):6297–307. Available from: https://doi.org/10.1158/0008-5472.CAN-18-1045
  • 25. Flamigni F, Facchini A, Capanni C, Stefanelli C, Tantini B, Caldarera CM. ornithine decarboxylase in leukaemia L1210 cells. 1999;369:363–9.
  • 26. Antonyak MA, McNeill CJ, Wakshlag JJ, Boehm JE, Cerione RA. Activation of the Ras-ERK pathway inhibits retinoic acid-induced stimulation of tissue transglutaminase expression in NIH3T3 cells. Journal of Biological Chemistry [Internet]. 2003;278(18):15859–66. Available from: http://dx.doi.org/10.1074/jbc.M300037200
  • 27. Qiao J, Paul P, Lee S, Qiao L, Josifi E, Tiao JR, et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and biophysical research communications. 2012 Aug;424(3):421–6.
There are 27 citations in total.

Details

Primary Language English
Subjects Clinical Oncology
Journal Section Clinical Research
Authors

Safiye Aktaş

Submission Date December 19, 2024
Acceptance Date January 30, 2025
Publication Date July 25, 2025
Published in Issue Year 2025 Volume: 39 Issue: 3

Cite

Vancouver Aktaş S. Anti-Cancer treatments affecting PI3K/Akt/Mtor and Ras/MAPK pathways in neuroblastoma. Dev Exp Health Med. 2025;39(3):153-6.