Review
BibTex RIS Cite

PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU

Year 2018, Volume: 11 Issue: 1, 7 - 17, 26.12.2018

Abstract

ÖZET

 

Modern tarım
uygulamalarında pestisitler verim arttırıcı olarak kullanılmasına karşın,
uygunsuz pestisit kullanımı sonucu yüksek miktarlardaki pestisitler toprak ve
sularda birikmektedir. Hem çevre hem de sağlık açısından problemler oluşturan
bu pestisitlerin biyoremediasyon teknolojileri ile alıcı ortamlardan
uzaklaştırılması yaklaşımları son zamanlarda önem kazanmıştır. Bu çalışmada
literatürde hem dünya hem de ülkemizde pestisit kullanımı ile ilgili veriler
derlenmiş olup, kullanılan pestisitlerin oluşturduğu sorunların giderimi için
son yıllarda yapılan biyoremediasyon çalışmaları incelenmiştir. Literatürdeki
çalışmalar incelendiğinde; biyoremediasyon teknolojilerinin pestisitle
kirlenmiş ortamların iyileştirilmesinde başarılı bir şekilde kullanılabildiği
tespit edilmiştir.

Anahtar Kelimeler: Biyoremediasyon, çevre kirliliği, pestisit

 

ABSTRACT



Although pesticides are used as fertilizer in modern agriculture practices,
high amounts of pesticides accumulate in soil and water, resulting in
inappropriate pesticide use. Approaches to the removal of these pesticides from
the receiving environment with bioremediation technologies have gained
importance in recent times, which are problems both in terms of environment and
health. In this study, data on the use of pesticides in both the world and our
country have been collected in the literature and bioremediation studies
carried out in recent years for the remediation of problems caused by used
pesticides have been examined. When the studies in the literature are examined;
it has been found that bioremediation technologies can be used successfully in
the amelioration of pesticide contaminated environments.

 

















Keywords:
Bioremediation, environmental pollution, pesticide

References

  • [1] EPA (U.S. Environmental Protection Agency), 1999. “Waste Research Strategy”, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH”, EPA/600/R98/154.
  • [2] Niti, C., Sunita, S., Kamlesh, K., Rakesh, K., 2013. ‘Bioremediation: An emerging technology for remediation of pesticides’, Res. J. Chem. Environ, 17, 88–105.
  • [3] Delaplane, K., S., 1996. “Pesticide usage in the United States: Benefits, Risks and Trends”, Cooperative Extension Service, The University of Georgia, Athens, Georgia.
  • [4] Ali, U., Syed, J.H., Malik, R.N., Katsoyiannis, A., Li, J., Zhang, G., Jones, K.C., 2014. “Organochlorine pesticides (OCPs) in South Asian region: a review”, Sci. Total Environ, 476, 705–717.
  • [5] Delen, N., Durmuşoğlu, E., Güncan, A., Güngör, N., Turgut, C. ve Burçak, A., 2008. “Türkiye’de Pestisit Kullanımı, Kalıntı ve Organizmalarda Duyarlılık Azalışı Sorunları”, Türkiye Ziraat Mühendisliği 6. Teknik Kongre. ve Eğitim Merkezi, Nükleer Kimya Bölümü, Ankara.
  • [6] Delen N., Tirkayi O., Türkseven S., Temur C., 2015. “Türkiye’de Pestisit Kullanımı, Kalıntı ve Dayanıklılık Sorunları, Çözüm Önerileri”, Türkiye Ziraat Mühendisliği Vlll. Teknik Kongresi, At Ankira, Volume: Bildiriler Kitabı - 2 , 758 – 778.
  • [7] Şık A., 2015. “Meyvemizi bile zehir ettiler”, Cumhuriyet Gazetesi, 05 Temmuz 2015, http://www.cumhuriyet.com.tr/haber/turkiye/314463/Meyvemizi_bile_zehir_ettiler.ht ml.
  • [8] Delen, N., Tosun, N., Toros, S., Öztürk, S., Yücel, A. ve Çalı, S., 1995. “Tarım ilaçları kullanımı ve Üretimi”, Türkiye Ziraat Mühendisliği IV. Teknik Kongresi, T.C. Ziraat Bankası Kültür Yayınları, 1015-1028.
  • [9] Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., Liu, Y., 2016. “Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review” Chem. Eng. J. 284, 582–598.
  • [10] Yılmazer, P., 2006. “Sulu ortamlardan ağır metallerin mikroorganizmalar yoluyla giderimi”, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 1- 17.
  • [11] Rittman, B. E., McCarty, P. L., 2001. “Environmental Biotechnology: Principles and Applications”, McGraw-Hill International Editions, 695-725.
  • [12] Cheng, H.H., Mulla, D.J., 1999. “ Bioremediation of Contamined Soils “, The Soil Environment. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, USA.
  • [13] Dindar E., Başkaya H.S., Topaç Şağban F.O., 2010. “Kirlenmiş Toprakların Biyoremediasyon ile Islahı”, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi., Cilt 15,Sayı 2.
  • [14] Gerhardt, K.E., Huang, X.D., Glick, B.R., Greenberg, B.M., 2009. “Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges” , Plant Sci. 176, 20–30.
  • [15] Newman, L.A., Reynolds, C.M., 2004. “Phytodegradation of organic compounds”, Curr. Opin. Biotechnol. 15, 225–230.
  • [16] Mulligan, C.N., Yang, R.N., Gibbs, B.F., 2001, “Remediation Techologies for Metal- Contaminated Soils and Ground Water: an evaluation” , Engineering Geology, Vol:60, pp.193-207.
  • [17] Karthikeyan, R., Davis, L.C., Erickson, L.E., Al-Khatib, K., Kulakow, P.A., Barnes, P.L., Hutchinson, S.L., Nurzhanova, A.A., 2004. “Potential for plant-based remediation of pesticide-contaminated soil and water using nontarget plants such as trees, shrubs, and grasses”, Crit. Rev. Plant Sci, 23, 91–101.
  • [18] White, J.C., 2002. “Differential bioavailability of field-weathered p,p′-DDE to plants of the Cucurbita and Cucumis genera”, Chemosphere , 49, 143–152.
  • [19] White, J.C., Wang, X., Gent, M.P., Iannucci-Berger, W., Eitzer, B.D., Schultes, N.P., Arienzo, M., Mattina, M.I., 2003. “Subspecies-level variation in the phytoextraction of weathered p,p′-DDE by Cucurbita pepo”, Environ. Sci. Technol, 37, 4368–4373.
  • [20] Mitton, F.M., Gonzalez, M., Monserrat, J.M., Miglioranza, K.S.B., 2016. “Potential use of edible crops in the phytoremediation of endosulfan residues in soil”, Chemosphere, 148, 300–306.
  • [21] Wu, N., Zhang, S., Huang, H., Shan, X., Christie, P., Wang, Y., 2008. “DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant” Environ. Pollut, 151, 569–575.
  • [22] Doty, S.L., 2008. “Enhancing phytoremediation through the use of transgenic plants and endophytes”, New Phytol, 179, 318–333.
  • [23] Hussain, S., Siddique, T., Arshad, M., Saleem, M., 2009. “Bioremediation and phytoremediation of pesticides: recent advances”, Crit. Rev. Environ. Sci. Techno, 39, 843–907.
  • [24] Kawahigashi, H., Hirose, S., Ohkawa, H., Ohkawa, Y., 2006. “Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J. Agric”, Food Chem, 54, 2985–2991.
  • [25] Viktorova, J., Novakova, M., Trbolova, L., Vrchotova, B., Lovecka, P., Mackova, M., Macek, T., 2014. “Characterization of transgenic tobacco plants containing bacterial bphc gene and study of their phytoremediation ability”, Int. J. Phytorem, 16, 937–946.
  • [26] Agnello, Huguenot, D., Van Hullebusch, E.D., Esposito, G., 2014. “Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments”, Crit. Rev. Environ. Sci. Technol , 44, 2531–2576.
  • [27] Bosecker, K. 2001. “Microbial leaching in environmental clean-up programmes, Hydrometallurgy”, 59, 245-248.
  • [28] Maurya, N. S., Mittal, A. K., Cornel, P., Rother, E., 2006. “Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength an pH”, Biores. Technol, 97, 512521.
  • [29] Vilar, V. J. P., Botelho, C. M. S., Boaventura, R. A. R., 2007. “Methylene Blue adsorption by algal biomass based materials: Biosorbents characterization andprocess behaviour”, J. Hazard. Mater, 147, 120-132.
  • [30] Morillo e., Villaverde j., 2017. “Advanced technologies for the remediation of pesticide- contaminated soils” Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC).
  • [31] Lopes, A.R., Danko, A.S., Manaia, C.M., Nunes, O.C., 2012. “Molinate biodegradation in soils: natural attenuation versus bioaugmentation”, Appl. Microbiol. Biotechnol, http://dx.doi.org/10.1007/s00253-012-4096-y.
  • [32] Salunkhe, V.P., Sawant, I.S., Banerjee, K., Wadkar, P.N., Sawant, S.D., 2015. “Enhanced dissipation of triazole and multiclass pesticide residues on grapes after foliar application of grapevine-associated bacillus species”, J. Agric. Food Chem, 63, 10736–10746.
  • [33] Chen, S., Chang, S., Deng, Y., An, S., Hu, Dong, Y.H., Zhou, J., Hu, M., Zhong, G., Zhang, L.H., 2014. “Fenpropathrin biodegradation pathway in bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils”, J. Agric. Food Chem, 62, 2147–2157.
  • [34] Dai, Y., Li, N., Zhao, Q., Xie, S., 2015. “Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure”, Biodegradation , 26, 161–170.
  • [35] Farhan, M., Ali-Butt, Z., Khan, A.U., Wahid, A., Ahmad, M., Ahmad, F., Kanwal, A., 2014. “Enhanced biodegradation of chlorpyrifos by agricultural soil isolate”, Asian J. Chem, 26, 3013–3017.
  • [36] Silambarasan, S., Abraham, J., 2013. “Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1”, Water Air Soil Pollut, 224, 369.
  • [37] Peng, X., Huang, J., Liu, C., Xiang, Z., Zhou, J., Zhong, G., 2012. “Biodegradation of bensulphuron- methyl by a novel Penicillium pinophilum strain BP-H-02”, J. Hazard. Mater, 213, 216–221.
  • [38] Islas-García, A., Vega-Loyo, L., Aguilar-López, R., Xoconostle-Cázares, B., RodríguezVázquez, R., 2015. “Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility”, J. Environ. Sci. Health B , 1532–4109.
  • [39] Ortíz, I., Velasco, A., Le Borgne, S., Revah, S., 2013. “Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates”, Biodegradation, 24, 215–225.
  • [40] Silva, E., Fialho, A., SA-Correia, I., Burns, R.G., Shaw, L.J., 2004. “Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine”, Environ. Sci. Technol, 38, 632–637.
  • [41] Singh, P., Saini, H.S., Raj, M., 2016. “Rhamnolipid mediated enhanced degradation of chlorpyrifos by bacterial consortium in soil-water system”, Ecotoxicol. Environ. Saf, 134, 156–162.
  • [42] Singh, A.K., Cameotra, S.S., 2014. “Influence of microbial and synthetic surfactant on the biodegradation of atrazine”, Environ. Sci. Pollut Res, 21, 2088–2097.
  • [43] Villaverde, J., Posada-Baquero, R., Rubio-Bellido, M., Laiz, L., Saiz-Jimenez, C., SanchezTrujillo, M.A., Morillo, E., 2012. “Enhanced mineralization of diuron using a cyclodextrin-based bioremediation technology”, J. Agric. Food Chem, 60, 9941–9947.
  • [44] Ye, M., Sun, M., Hu, F., Kengara, F.O., Jiang, X., Luo, Y., Yang, X., 2014. “Remediation of organochlorine pesticides (OCPs) contaminated site by successive methyl-β- cyclodextrin (MCD) and sunflower oil enhanced soil washing - Portulaca oleracea L. Cultivation”, Chemosphere 105, 119–125.
  • [45] Moorman, T.B., Cowan, J.K., Arthur, E.L., Coats, J.R., 2001. “Organic amendments to enhance herbicide biodegradation in contaminated soils, Biol. Fertil. Soils, 33, 541– 545.
  • [46] Delgado-Moreno, L., Peña, A., 2009. “Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil”, Sci. Total Environ, 407, 1489–1495.
  • [47] Kadian, N., Gupta, A., Satya, S., Mehta, S.K., Malik, A., 2008. “Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials”, Bioresour Technol, 99, 4642–4647.
  • [48] Rubio-Bellido, M., Madrid, F., Morillo, E., Villaverde, J., 2015. “Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments”, Sci. Total Environ, 502, 699–705.
  • [49] Marín-Benito, J.M., Herrero-Hernández, E., Andrades, M.S., Sánchez-Martín, M.J., Rodríguez-Cruz, M.S., 2014. “Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods”, Sci. Total Environ, 476–477, 611–621.
  • [50] Rubinos, D.A., Villasuso, R., Muniategui, S., Barral, M.T., Díaz-Fierros, F., 2007. “Using the landfarming technique to remediate soils contaminated with hexachlorocyclohexane isomers”, Water Air Soil Pollut, 181, 385–390.
  • [51] Varo-Arguello, W.E., Camacho-Pérez, B., Ríos-Leal, E., Vazquez-Landaverde, P.A., Ponce- Noyola, M.T., Barrera-Cortés, J., Sastre-Conde, I., Rindernknecht-Seijas, N.F., Poggi- Varaldo, H.M., 2012. “Triphasic slurry bioreactors for the bioremediation of lindane- impacted soil under aerobic and anaerobic conditions”, Environ. Eng. Manag, J. 10.
  • [52] Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Sethunathan, N., Naidu, R., 2011. “Mixtures of environmental pollutants: effects on microorganisms and their activities in soils”, Rev. Environ. Contam. Toxicol, 63–120.
  • [53] Robles-González, I., Fava, F., Poggi-Varaldo, H.M., 2008. “A review on slurry bioreactors for bioremediation of soils and sediments”, Microb. Cell Factories, 7, 5–50.
  • [54] Quintero, J.C., Moreira, M.T., Lema, J.M., Feijoo, G., 2006. “An anaerobic bioreactor allows the efficient degradation of HCH isomers in soil slurry”, Chemosphere, 63, 1005– 1019.
  • [55] Fuentes, M.S., Alvarez, A., Saez, J.M., Benimeli, C.S., Amoroso, M.J., 2014. “Use of actinobacteria consortia to improve methoxychlor bioremediation in different contaminated matrices”, Bioremediation in Latin America. Current Res. Pers, 267– 277.
  • [56] Znad, H., Ohata, H., Tade, M.O., 2010. “A net draft tube slurry airlift bioreactor for 2,4- D (2,4-dichlorophenoxyacetic acid) pesticide biodegradation”, Can. J. Chem. Eng, 88, 565–573.
  • [57] Mukherjee, S., Weihermüller, L., Tappe, W., Hofmann, D., Köppchen, S., Laabs, V., Vereecken, H., Burauel, P., 2016. “Sorption–desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems”, Sci. Total Environ, 559, 63–73.
  • [58] Chin-Pampillo, J.S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., RodríguezRodríguez, C.E., 2015. “Adaptation of biomixtures for carbofuran degradation in onfarm biopurification systems in tropical regions”, Environ. Sci. Pollut. Res, 22, 9839–9848.
  • [59] Gao, H., Gao, X., Cao, Y., Xu, L., Jia, L., 2015. “Influence of hydroxypropyl-β- cyclodextrin on the extraction and biodegradation of p,p'-DDT, o,p'-DDT, p,p'-DDD, and p,p'-DDE in soils”, Water Air Soil Pollut, 226, 208–213.
  • [60] Diez, M.C., Levio, M., Briceño, G., Rubilar, O., Tortella, G., Gallardo, F., 2013a. “Biochar as a partial replacement of peat in pesticide-degrading biomixtures formulated with different soil types. J. Biobased Mater”, Bioenergy , 7, 741–747.
  • [61] Diez, M.C., Tortella, G.R., Briceño, G., Castillo, M.P., Díaz, J., Palma, G., Altamirano, C., Calderón, C., Rubilar, O., 2013b. “Influence of novel lignocellulosic residues in a biobed biopurification system on the degradation of pesticides applied in repeatedly high doses”, Electron. J. Biotechnol, 0717–3458.
  • [62] Castillo-Diaz, J.M., Delgado-Moreno, L., Núñez, R., Nogales, R., Romero, E., 2016. “Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts”, Bioresour. Technol, 214, 234–241.
  • [63] Madrigal-Zúñiga, K., Ruiz-Hidalgo, K., Chin-Pampillo, J.S., Masís-Mora, M., CastroGutiérrez, V., Rodríguez-Rodríguez, C.E., 2016. “Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems”, Biol. Fertil. Soils, 52, 243–250.
  • [64] Cáceres, T., Megharaj, M. and Naidu, R., 2008. “Biodegradation of The Pesticide Fenamiphos By Ten Different Species Of Green Algae and Cyanobacteria. Current Microbiology”, 57, 643-6.
  • [65] Amınfarzaneh H., 2010. “Siyanobakterilerde Bitki Büyüme Düzenleyicilerin Biyokütle Üretimi Ve Pestisit Giderimi Üzerine Etkisi”, Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Doktora Tezi, 10.1501/ankara-24407.
  • [66] Çoban, Ç., 2011. “Saccharomyces cerevisiae Mayasıyla Reactıve Blue 222 Biyosorpsiyonunun Kinetik Ve Termodinamiği”, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 22 s.
  • [67] Maqbool, Z., Hussain, S., Imran, M., Mahmood, F., Shahzad, T., Ahmed, Z., Azeem, F., Muzammil, S.,2016. “Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review”, Environ. Sci. Pollut. Res, 23, 16,904– 16,925.
  • [68] Eliçin, K., Koç, C., Gezici, M., Gürhan, R., 2013. “Biyoyakıt Amaçlı Nannochloropsis salina Mikroalg Türünün Bazı Yetiştirme Parametrelerinin Belirlenmesi”, Tarım Makinalari Bilimi Dergisi, 99-107.
  • [69] Girgin, M., 2011. “Pinus nigra kozalaklarında immobilize Saccharomyces cerevisiae biyokütlesi ile sulu çözeltilerdeki bazı tekstil boyarmaddelerinin renk giderimi”, Yüksek lisans tezi, Eskişehir Osmangazi Üniversitesi, 112 s.
  • [70] Gül Ü. D., Silah H., 2017. “Tarımda Kullanılan Atrazinin Gideriminde Rhızopus Arrhızus Kullanım Potansiyelinin Belirlenmesi” , GIDA , 42 (3): 261-267.
Year 2018, Volume: 11 Issue: 1, 7 - 17, 26.12.2018

Abstract

References

  • [1] EPA (U.S. Environmental Protection Agency), 1999. “Waste Research Strategy”, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH”, EPA/600/R98/154.
  • [2] Niti, C., Sunita, S., Kamlesh, K., Rakesh, K., 2013. ‘Bioremediation: An emerging technology for remediation of pesticides’, Res. J. Chem. Environ, 17, 88–105.
  • [3] Delaplane, K., S., 1996. “Pesticide usage in the United States: Benefits, Risks and Trends”, Cooperative Extension Service, The University of Georgia, Athens, Georgia.
  • [4] Ali, U., Syed, J.H., Malik, R.N., Katsoyiannis, A., Li, J., Zhang, G., Jones, K.C., 2014. “Organochlorine pesticides (OCPs) in South Asian region: a review”, Sci. Total Environ, 476, 705–717.
  • [5] Delen, N., Durmuşoğlu, E., Güncan, A., Güngör, N., Turgut, C. ve Burçak, A., 2008. “Türkiye’de Pestisit Kullanımı, Kalıntı ve Organizmalarda Duyarlılık Azalışı Sorunları”, Türkiye Ziraat Mühendisliği 6. Teknik Kongre. ve Eğitim Merkezi, Nükleer Kimya Bölümü, Ankara.
  • [6] Delen N., Tirkayi O., Türkseven S., Temur C., 2015. “Türkiye’de Pestisit Kullanımı, Kalıntı ve Dayanıklılık Sorunları, Çözüm Önerileri”, Türkiye Ziraat Mühendisliği Vlll. Teknik Kongresi, At Ankira, Volume: Bildiriler Kitabı - 2 , 758 – 778.
  • [7] Şık A., 2015. “Meyvemizi bile zehir ettiler”, Cumhuriyet Gazetesi, 05 Temmuz 2015, http://www.cumhuriyet.com.tr/haber/turkiye/314463/Meyvemizi_bile_zehir_ettiler.ht ml.
  • [8] Delen, N., Tosun, N., Toros, S., Öztürk, S., Yücel, A. ve Çalı, S., 1995. “Tarım ilaçları kullanımı ve Üretimi”, Türkiye Ziraat Mühendisliği IV. Teknik Kongresi, T.C. Ziraat Bankası Kültür Yayınları, 1015-1028.
  • [9] Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., Liu, Y., 2016. “Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review” Chem. Eng. J. 284, 582–598.
  • [10] Yılmazer, P., 2006. “Sulu ortamlardan ağır metallerin mikroorganizmalar yoluyla giderimi”, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 1- 17.
  • [11] Rittman, B. E., McCarty, P. L., 2001. “Environmental Biotechnology: Principles and Applications”, McGraw-Hill International Editions, 695-725.
  • [12] Cheng, H.H., Mulla, D.J., 1999. “ Bioremediation of Contamined Soils “, The Soil Environment. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, USA.
  • [13] Dindar E., Başkaya H.S., Topaç Şağban F.O., 2010. “Kirlenmiş Toprakların Biyoremediasyon ile Islahı”, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi., Cilt 15,Sayı 2.
  • [14] Gerhardt, K.E., Huang, X.D., Glick, B.R., Greenberg, B.M., 2009. “Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges” , Plant Sci. 176, 20–30.
  • [15] Newman, L.A., Reynolds, C.M., 2004. “Phytodegradation of organic compounds”, Curr. Opin. Biotechnol. 15, 225–230.
  • [16] Mulligan, C.N., Yang, R.N., Gibbs, B.F., 2001, “Remediation Techologies for Metal- Contaminated Soils and Ground Water: an evaluation” , Engineering Geology, Vol:60, pp.193-207.
  • [17] Karthikeyan, R., Davis, L.C., Erickson, L.E., Al-Khatib, K., Kulakow, P.A., Barnes, P.L., Hutchinson, S.L., Nurzhanova, A.A., 2004. “Potential for plant-based remediation of pesticide-contaminated soil and water using nontarget plants such as trees, shrubs, and grasses”, Crit. Rev. Plant Sci, 23, 91–101.
  • [18] White, J.C., 2002. “Differential bioavailability of field-weathered p,p′-DDE to plants of the Cucurbita and Cucumis genera”, Chemosphere , 49, 143–152.
  • [19] White, J.C., Wang, X., Gent, M.P., Iannucci-Berger, W., Eitzer, B.D., Schultes, N.P., Arienzo, M., Mattina, M.I., 2003. “Subspecies-level variation in the phytoextraction of weathered p,p′-DDE by Cucurbita pepo”, Environ. Sci. Technol, 37, 4368–4373.
  • [20] Mitton, F.M., Gonzalez, M., Monserrat, J.M., Miglioranza, K.S.B., 2016. “Potential use of edible crops in the phytoremediation of endosulfan residues in soil”, Chemosphere, 148, 300–306.
  • [21] Wu, N., Zhang, S., Huang, H., Shan, X., Christie, P., Wang, Y., 2008. “DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant” Environ. Pollut, 151, 569–575.
  • [22] Doty, S.L., 2008. “Enhancing phytoremediation through the use of transgenic plants and endophytes”, New Phytol, 179, 318–333.
  • [23] Hussain, S., Siddique, T., Arshad, M., Saleem, M., 2009. “Bioremediation and phytoremediation of pesticides: recent advances”, Crit. Rev. Environ. Sci. Techno, 39, 843–907.
  • [24] Kawahigashi, H., Hirose, S., Ohkawa, H., Ohkawa, Y., 2006. “Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J. Agric”, Food Chem, 54, 2985–2991.
  • [25] Viktorova, J., Novakova, M., Trbolova, L., Vrchotova, B., Lovecka, P., Mackova, M., Macek, T., 2014. “Characterization of transgenic tobacco plants containing bacterial bphc gene and study of their phytoremediation ability”, Int. J. Phytorem, 16, 937–946.
  • [26] Agnello, Huguenot, D., Van Hullebusch, E.D., Esposito, G., 2014. “Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments”, Crit. Rev. Environ. Sci. Technol , 44, 2531–2576.
  • [27] Bosecker, K. 2001. “Microbial leaching in environmental clean-up programmes, Hydrometallurgy”, 59, 245-248.
  • [28] Maurya, N. S., Mittal, A. K., Cornel, P., Rother, E., 2006. “Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength an pH”, Biores. Technol, 97, 512521.
  • [29] Vilar, V. J. P., Botelho, C. M. S., Boaventura, R. A. R., 2007. “Methylene Blue adsorption by algal biomass based materials: Biosorbents characterization andprocess behaviour”, J. Hazard. Mater, 147, 120-132.
  • [30] Morillo e., Villaverde j., 2017. “Advanced technologies for the remediation of pesticide- contaminated soils” Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC).
  • [31] Lopes, A.R., Danko, A.S., Manaia, C.M., Nunes, O.C., 2012. “Molinate biodegradation in soils: natural attenuation versus bioaugmentation”, Appl. Microbiol. Biotechnol, http://dx.doi.org/10.1007/s00253-012-4096-y.
  • [32] Salunkhe, V.P., Sawant, I.S., Banerjee, K., Wadkar, P.N., Sawant, S.D., 2015. “Enhanced dissipation of triazole and multiclass pesticide residues on grapes after foliar application of grapevine-associated bacillus species”, J. Agric. Food Chem, 63, 10736–10746.
  • [33] Chen, S., Chang, S., Deng, Y., An, S., Hu, Dong, Y.H., Zhou, J., Hu, M., Zhong, G., Zhang, L.H., 2014. “Fenpropathrin biodegradation pathway in bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils”, J. Agric. Food Chem, 62, 2147–2157.
  • [34] Dai, Y., Li, N., Zhao, Q., Xie, S., 2015. “Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure”, Biodegradation , 26, 161–170.
  • [35] Farhan, M., Ali-Butt, Z., Khan, A.U., Wahid, A., Ahmad, M., Ahmad, F., Kanwal, A., 2014. “Enhanced biodegradation of chlorpyrifos by agricultural soil isolate”, Asian J. Chem, 26, 3013–3017.
  • [36] Silambarasan, S., Abraham, J., 2013. “Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1”, Water Air Soil Pollut, 224, 369.
  • [37] Peng, X., Huang, J., Liu, C., Xiang, Z., Zhou, J., Zhong, G., 2012. “Biodegradation of bensulphuron- methyl by a novel Penicillium pinophilum strain BP-H-02”, J. Hazard. Mater, 213, 216–221.
  • [38] Islas-García, A., Vega-Loyo, L., Aguilar-López, R., Xoconostle-Cázares, B., RodríguezVázquez, R., 2015. “Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility”, J. Environ. Sci. Health B , 1532–4109.
  • [39] Ortíz, I., Velasco, A., Le Borgne, S., Revah, S., 2013. “Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates”, Biodegradation, 24, 215–225.
  • [40] Silva, E., Fialho, A., SA-Correia, I., Burns, R.G., Shaw, L.J., 2004. “Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine”, Environ. Sci. Technol, 38, 632–637.
  • [41] Singh, P., Saini, H.S., Raj, M., 2016. “Rhamnolipid mediated enhanced degradation of chlorpyrifos by bacterial consortium in soil-water system”, Ecotoxicol. Environ. Saf, 134, 156–162.
  • [42] Singh, A.K., Cameotra, S.S., 2014. “Influence of microbial and synthetic surfactant on the biodegradation of atrazine”, Environ. Sci. Pollut Res, 21, 2088–2097.
  • [43] Villaverde, J., Posada-Baquero, R., Rubio-Bellido, M., Laiz, L., Saiz-Jimenez, C., SanchezTrujillo, M.A., Morillo, E., 2012. “Enhanced mineralization of diuron using a cyclodextrin-based bioremediation technology”, J. Agric. Food Chem, 60, 9941–9947.
  • [44] Ye, M., Sun, M., Hu, F., Kengara, F.O., Jiang, X., Luo, Y., Yang, X., 2014. “Remediation of organochlorine pesticides (OCPs) contaminated site by successive methyl-β- cyclodextrin (MCD) and sunflower oil enhanced soil washing - Portulaca oleracea L. Cultivation”, Chemosphere 105, 119–125.
  • [45] Moorman, T.B., Cowan, J.K., Arthur, E.L., Coats, J.R., 2001. “Organic amendments to enhance herbicide biodegradation in contaminated soils, Biol. Fertil. Soils, 33, 541– 545.
  • [46] Delgado-Moreno, L., Peña, A., 2009. “Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil”, Sci. Total Environ, 407, 1489–1495.
  • [47] Kadian, N., Gupta, A., Satya, S., Mehta, S.K., Malik, A., 2008. “Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials”, Bioresour Technol, 99, 4642–4647.
  • [48] Rubio-Bellido, M., Madrid, F., Morillo, E., Villaverde, J., 2015. “Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments”, Sci. Total Environ, 502, 699–705.
  • [49] Marín-Benito, J.M., Herrero-Hernández, E., Andrades, M.S., Sánchez-Martín, M.J., Rodríguez-Cruz, M.S., 2014. “Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods”, Sci. Total Environ, 476–477, 611–621.
  • [50] Rubinos, D.A., Villasuso, R., Muniategui, S., Barral, M.T., Díaz-Fierros, F., 2007. “Using the landfarming technique to remediate soils contaminated with hexachlorocyclohexane isomers”, Water Air Soil Pollut, 181, 385–390.
  • [51] Varo-Arguello, W.E., Camacho-Pérez, B., Ríos-Leal, E., Vazquez-Landaverde, P.A., Ponce- Noyola, M.T., Barrera-Cortés, J., Sastre-Conde, I., Rindernknecht-Seijas, N.F., Poggi- Varaldo, H.M., 2012. “Triphasic slurry bioreactors for the bioremediation of lindane- impacted soil under aerobic and anaerobic conditions”, Environ. Eng. Manag, J. 10.
  • [52] Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Sethunathan, N., Naidu, R., 2011. “Mixtures of environmental pollutants: effects on microorganisms and their activities in soils”, Rev. Environ. Contam. Toxicol, 63–120.
  • [53] Robles-González, I., Fava, F., Poggi-Varaldo, H.M., 2008. “A review on slurry bioreactors for bioremediation of soils and sediments”, Microb. Cell Factories, 7, 5–50.
  • [54] Quintero, J.C., Moreira, M.T., Lema, J.M., Feijoo, G., 2006. “An anaerobic bioreactor allows the efficient degradation of HCH isomers in soil slurry”, Chemosphere, 63, 1005– 1019.
  • [55] Fuentes, M.S., Alvarez, A., Saez, J.M., Benimeli, C.S., Amoroso, M.J., 2014. “Use of actinobacteria consortia to improve methoxychlor bioremediation in different contaminated matrices”, Bioremediation in Latin America. Current Res. Pers, 267– 277.
  • [56] Znad, H., Ohata, H., Tade, M.O., 2010. “A net draft tube slurry airlift bioreactor for 2,4- D (2,4-dichlorophenoxyacetic acid) pesticide biodegradation”, Can. J. Chem. Eng, 88, 565–573.
  • [57] Mukherjee, S., Weihermüller, L., Tappe, W., Hofmann, D., Köppchen, S., Laabs, V., Vereecken, H., Burauel, P., 2016. “Sorption–desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems”, Sci. Total Environ, 559, 63–73.
  • [58] Chin-Pampillo, J.S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., RodríguezRodríguez, C.E., 2015. “Adaptation of biomixtures for carbofuran degradation in onfarm biopurification systems in tropical regions”, Environ. Sci. Pollut. Res, 22, 9839–9848.
  • [59] Gao, H., Gao, X., Cao, Y., Xu, L., Jia, L., 2015. “Influence of hydroxypropyl-β- cyclodextrin on the extraction and biodegradation of p,p'-DDT, o,p'-DDT, p,p'-DDD, and p,p'-DDE in soils”, Water Air Soil Pollut, 226, 208–213.
  • [60] Diez, M.C., Levio, M., Briceño, G., Rubilar, O., Tortella, G., Gallardo, F., 2013a. “Biochar as a partial replacement of peat in pesticide-degrading biomixtures formulated with different soil types. J. Biobased Mater”, Bioenergy , 7, 741–747.
  • [61] Diez, M.C., Tortella, G.R., Briceño, G., Castillo, M.P., Díaz, J., Palma, G., Altamirano, C., Calderón, C., Rubilar, O., 2013b. “Influence of novel lignocellulosic residues in a biobed biopurification system on the degradation of pesticides applied in repeatedly high doses”, Electron. J. Biotechnol, 0717–3458.
  • [62] Castillo-Diaz, J.M., Delgado-Moreno, L., Núñez, R., Nogales, R., Romero, E., 2016. “Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts”, Bioresour. Technol, 214, 234–241.
  • [63] Madrigal-Zúñiga, K., Ruiz-Hidalgo, K., Chin-Pampillo, J.S., Masís-Mora, M., CastroGutiérrez, V., Rodríguez-Rodríguez, C.E., 2016. “Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems”, Biol. Fertil. Soils, 52, 243–250.
  • [64] Cáceres, T., Megharaj, M. and Naidu, R., 2008. “Biodegradation of The Pesticide Fenamiphos By Ten Different Species Of Green Algae and Cyanobacteria. Current Microbiology”, 57, 643-6.
  • [65] Amınfarzaneh H., 2010. “Siyanobakterilerde Bitki Büyüme Düzenleyicilerin Biyokütle Üretimi Ve Pestisit Giderimi Üzerine Etkisi”, Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Doktora Tezi, 10.1501/ankara-24407.
  • [66] Çoban, Ç., 2011. “Saccharomyces cerevisiae Mayasıyla Reactıve Blue 222 Biyosorpsiyonunun Kinetik Ve Termodinamiği”, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 22 s.
  • [67] Maqbool, Z., Hussain, S., Imran, M., Mahmood, F., Shahzad, T., Ahmed, Z., Azeem, F., Muzammil, S.,2016. “Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review”, Environ. Sci. Pollut. Res, 23, 16,904– 16,925.
  • [68] Eliçin, K., Koç, C., Gezici, M., Gürhan, R., 2013. “Biyoyakıt Amaçlı Nannochloropsis salina Mikroalg Türünün Bazı Yetiştirme Parametrelerinin Belirlenmesi”, Tarım Makinalari Bilimi Dergisi, 99-107.
  • [69] Girgin, M., 2011. “Pinus nigra kozalaklarında immobilize Saccharomyces cerevisiae biyokütlesi ile sulu çözeltilerdeki bazı tekstil boyarmaddelerinin renk giderimi”, Yüksek lisans tezi, Eskişehir Osmangazi Üniversitesi, 112 s.
  • [70] Gül Ü. D., Silah H., 2017. “Tarımda Kullanılan Atrazinin Gideriminde Rhızopus Arrhızus Kullanım Potansiyelinin Belirlenmesi” , GIDA , 42 (3): 261-267.
There are 70 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

ŞULE AYBÜKE Yavuz

ÜLKÜYE DUDU Gül This is me

Publication Date December 26, 2018
Published in Issue Year 2018 Volume: 11 Issue: 1

Cite

APA Yavuz, Ş. A., & Gül, Ü. D. (2018). PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU. Türk Bilimsel Derlemeler Dergisi, 11(1), 7-17.
AMA Yavuz ŞA, Gül ÜD. PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU. Turk.Bilimsel Derleme Derg. December 2018;11(1):7-17.
Chicago Yavuz, ŞULE AYBÜKE, and ÜLKÜYE DUDU Gül. “PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU”. Türk Bilimsel Derlemeler Dergisi 11, no. 1 (December 2018): 7-17.
EndNote Yavuz ŞA, Gül ÜD (December 1, 2018) PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU. Türk Bilimsel Derlemeler Dergisi 11 1 7–17.
IEEE Ş. A. Yavuz and Ü. D. Gül, “PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU”, Turk.Bilimsel Derleme Derg., vol. 11, no. 1, pp. 7–17, 2018.
ISNAD Yavuz, ŞULE AYBÜKE - Gül, ÜLKÜYE DUDU. “PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU”. Türk Bilimsel Derlemeler Dergisi 11/1 (December 2018), 7-17.
JAMA Yavuz ŞA, Gül ÜD. PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU. Turk.Bilimsel Derleme Derg. 2018;11:7–17.
MLA Yavuz, ŞULE AYBÜKE and ÜLKÜYE DUDU Gül. “PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU”. Türk Bilimsel Derlemeler Dergisi, vol. 11, no. 1, 2018, pp. 7-17.
Vancouver Yavuz ŞA, Gül ÜD. PESTİSİTLE KİRLENMİŞ ORTAMLARIN BİYOREMEDİASYONU. Turk.Bilimsel Derleme Derg. 2018;11(1):7-17.