Research Article
BibTex RIS Cite

GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ

Year 2025, Volume: 17 Issue: 2, 274 - 297, 25.12.2025
https://doi.org/10.18613/deudfd.1763493

Abstract

Günümüzde deniz yoluyla gerçekleştirilen taşımacılık, küresel ticaret ile taşınan yüklerin büyük bölümünü kapsamaktadır. Bu yüklerin taşınması esnasında yüksek güçte ve dizel yakıtla çalışan gemiler kirletici gaz salımına neden olmaktadır. Uluslararası Denizcilik Örgütü (IMO) tarafından belirlenen katı salım sınırlamaları ve 2050 yılına kadar sektör kaynaklı kirletici gaz salımlarının %50 oranında azaltılması hedefi, denizcilik sektörünü alternatif yakıtlar ve temiz enerji çözümleri arayışına yöneltmiştir. Bu çalışma, gemi dizel makinelerinden çıkan atık ısı kullanılarak Buharlı Metan Dönüşümü (SMR/BMD) yöntemiyle gemi üzerinde hidrojen üretimini sağlayacak yenilikçi bir egzoz hattı tasarımını ve performans analizini sunmaktadır. Tasarlanan sistem, gemi makinesinin %100, %80 ve %50 yük koşullarında egzoz gazı sıcaklığı, basıncı ve akış hızını BMD prosesi için uygun seviyelere getirmeyi hedeflemektedir. Egzoz hattında burgulu ve delikli yönlendirici kullanılarak akış homojenliği ve ısı transferi iyileştirilmiştir. Sayısal analizler, hesaplamalı akışkanlar dinamiği yöntemiyle gerçekleştirilmiş; farklı geometriler ve yönlendirici sıcaklıklarının performansa etkileri değerlendirilmiştir. Sonuçlar, yönlendirici sıcaklığının artırılmasının çıkış gazı sıcaklığını 30 K’a kadar yükselttiğini, kesit ölçüsü artışının ise hızda yaklaşık 5 m/s artış sağladığını göstermektedir. Bu bulgular, verimli atık ısı kullanımı sayesinde gemide hidrojen üretilebileceğini ve kirletici gaz salımlarının azaltılabileceğini ortaya koymaktadır.

References

  • Acar, C. ve Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835–849. doi:10.1016/j.jclepro.2019.02.046
  • Ansys Inc. (2021). Ansys Fluent Theory Guide. ANSYS Inc., USA (C. 15317). Canonsburg, PA.
  • Bayramoğlu, K. (2023). Application of post-combustion carbon capture process in marine diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(4), 10909–10925. doi:10.1080/15567036.2023.2252671
  • Bayramoğlu, K. (2024). Determination of hydrogen production performance with waste exhaust gas in marine diesel engines. International Journal of Hydrogen Energy, 52, 1319–1333. doi:10.1016/j.ijhydene.2023.05.339
  • Bayramoğlu, K. ve Yılmaz, S. (2021). Emission and performance estimation in hydrogen injection strategies on diesel engines. International Journal of Hydrogen Energy, 46(57), 29732–29744. doi:10.1016/j.ijhydene.2020.08.135
  • Bayramoğlu, K., Yılmaz, S. ve Çoban, M. T. (2025). Numerical analysis of hydrogen production by methanol and methane steam reforming using compact reactors. Thermal Science and Engineering Progress, 58(January), 103238. doi:10.1016/j.tsep.2025.103238
  • Bian, Z., Xia, H., Wang, Z., Jiang, B., Yu, Y., Yu, K., … Kawi, S. (2020). CFD Simulation of a Hydrogen-Permeable Membrane Reactor for CO2Reforming of CH4: The Interplay of the Reaction and Hydrogen Permeation. Energy and Fuels, 34(10), 12366–12378. doi:10.1021/acs.energyfuels.0c02333
  • Caterpillar Motoren GmbH Co. (2016). Motor Proje Kataloğu Vm 46 df. Cherif, A., Atwair, M., Atsbha, T. A., Zarei, M., Duncan, I. J., Nebbali, R., … Lee, C. J. (2023). Enabling low-carbon membrane steam methane reforming: Comparative analysis and multi-objective NSGA-II-integrated Bayesian optimization. Energy Conversion and Management, 297(August), 117718. doi:10.1016/j.enconman.2023.117718
  • Christopher Selvam, D., Raja, T., Nagappan, B., Upadhye, V. J., Guntaj, J., Devarajan, Y. ve Mishra, R. (2025). The role of biodiesel in marine decarbonization: Technological innovations and ocean engineering challenges. Results in Engineering, 25(October 2024), 103974. doi:10.1016/j.rineng.2025.103974
  • Creutzig, F., Jochem, P., Edelenbosch, O. Y., Mattauch, L., Van Vuuren, D. P., McCollum, D. ve Minx, J. (2015). Transport: A roadblock to climate change mitigation? Science, 350(6263), 911–912. doi:10.1126/science.aac8033
  • Dinçer, I. ve Ishaq, H. (2021). Renewable hydrogen production. Elsevier.
  • Haghi, S. B., Salehi, G., Azad, M. T. ve Nichkoohi, A. L. (2020). 3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane. Petroleum Chemistry, 60(11), 1251–1259. doi:10.1134/S0965544120110109
  • He, D., Yu, Y., Kuang, Y. ve Wang, C. (2021). Model comparisons of flow and chemical kinetic mechanisms for methane-air combustion for engineering applications. Applied Sciences (Switzerland), 11(9). doi:10.3390/app11094107
  • IEA. (2023). Global Hydrogen Review 2023. International Energy Agency. OECD. doi:10.1787/a15b8442-en
  • Lao, L., Aguirre, A., Tran, A., Wu, Z., Durand, H. ve Christofides, P. D. (2016). CFD modeling and control of a steam methane reforming reactor. Chemical Engineering Science, 148, 78–92. doi:10.1016/j.ces.2016.03.038
  • Lion, S., Vlaskos, I. ve Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207(February), 112553. doi:10.1016/j.enconman.2020.112553
  • Liu, S., Leng, L., Zhou, W. ve Shi, L. (2021). Optimizing the Exhaust System of Marine Diesel Engines to Improve Low-speed Performances and Cylinder Working Conditions. Fluid Dynamics and Materials Processing, 17(4), 683–695. doi:10.32604/FDMP.2021.013575
  • Malalasekera, W. ve Versteeg, H. K. (2007). An Introduction to Computational Fluid Dynamics (C. M). doi:10.2514/1.22547
  • McGreavy, C. ve Newmann, M. W. (1969). Development of a mathematical model of a steam methane reformer. Institution of Electrical Engineering, Conference on the Industrial Applications of Dynamic Modelling içinde .
  • Nguyen, D. D., Ngo, S. I., Lim, Y. Il, Kim, W., Lee, U. Do, Seo, D. ve Yoon, W. L. (2019). Optimal design of a sleeve-type steam methane reforming reactor for hydrogen production from natural gas. International Journal of Hydrogen Energy, 44(3), 1973–1987. doi:10.1016/j.ijhydene.2018.11.188
  • Pantoleontos, G., Kikkinides, E. S. ve Georgiadis, M. C. (2012). A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor. International Journal of Hydrogen Energy, 37(21), 16346–16358. doi:10.1016/j.ijhydene.2012.02.125
  • Saha, M., Tregenza, O., Twelftree, J. ve Hulston, C. (2023). A review of thermoelectric generators for waste heat recovery in marine applications. Sustainable Energy Technologies and Assessments, 59(July), 103394. doi:10.1016/j.seta.2023.103394
  • Sun, X., Jiang, Y. C., Zhao, P., Jing, G. ve Ma, T. (2024). Effect of ammonia/hydrogen blending and injection modes on combustion emission and performance of marine engine. Fuel, 371(PA), 131894. doi:10.1016/j.fuel.2024.131894
  • Tang, Y., Liu, J., Liu, M., Feng, J., Deng, K., Zhu, S., … Li, G. (2025). Numerical studies on a novel air path design featured with the sequential turbocharging and the low-pressure exhaust gas recirculation for the marine two-stroke engine fulfilling the IMO Tier Ⅲ regulation. Energy, 328(November 2024), 136574. doi:10.1016/j.energy.2025.136574
  • Tran, A., Aguirre, A., Durand, H., Crose, M. ve Christofides, P. D. (2017). CFD modeling of a industrial-scale steam methane reforming furnace. Chemical Engineering Science, 171, 576–598. doi:10.1016/j.ces.2017.06.001
  • Zhu, S., Tang, Y., Wang, D., Bai, S., Deng, K. ve Wang, G. (2024). Numerical studies on the flow characteristic of the marine two-stroke engine integrated with the high-pressure exhaust gas recirculation system. Case Studies in Thermal Engineering, 53(May 2023), 103958. doi:10.1016/j.csite.2023.103958

INNOVATIVE EXHAUST LINE DESIGN AND PERFORMANCE ANALYSIS FOR HYDROGEN PRODUCTION WITH A MARINE DIESEL ENGINE

Year 2025, Volume: 17 Issue: 2, 274 - 297, 25.12.2025
https://doi.org/10.18613/deudfd.1763493

Abstract

Today, maritime transport accounts for a large proportion of global trade and cargo transportation. The transportation of these goods results in the emission of polluting gases from high-powered, diesel-fueled ships. The strict emission limits set by the International Maritime Organization (IMO) and the goal of reducing pollutant gas emissions from the sector by 50% by 2050 have prompted the maritime industry to seek alternative fuels and clean energy solutions. This study presents an innovative exhaust system design and performance analysis that enables hydrogen production on board ships using the Steam Methane Reforming (SMR) method, utilizing waste heat from ship diesel engines. The designed system aims to bring the exhaust gas temperature, pressure, and velocity to suitable levels for the SMR process under 100%, 80%, and 50% load conditions. Flow homogeneity and heat transfer have been improved by using helical and perforated deflectors in the exhaust system. Numerical analyses were performed using computational fluid dynamics methods; the effects of different geometries and deflector temperatures on performance were evaluated. The results show that increasing the deflector temperature raises the exhaust gas temperature by up to 30 K, while increasing the cross-sectional area increases the velocity by approximately 5 m/s. These findings demonstrate that waste heat can be efficiently utilized to produce hydrogen onboard a ship and reduce gas emissions.

References

  • Acar, C. ve Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835–849. doi:10.1016/j.jclepro.2019.02.046
  • Ansys Inc. (2021). Ansys Fluent Theory Guide. ANSYS Inc., USA (C. 15317). Canonsburg, PA.
  • Bayramoğlu, K. (2023). Application of post-combustion carbon capture process in marine diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(4), 10909–10925. doi:10.1080/15567036.2023.2252671
  • Bayramoğlu, K. (2024). Determination of hydrogen production performance with waste exhaust gas in marine diesel engines. International Journal of Hydrogen Energy, 52, 1319–1333. doi:10.1016/j.ijhydene.2023.05.339
  • Bayramoğlu, K. ve Yılmaz, S. (2021). Emission and performance estimation in hydrogen injection strategies on diesel engines. International Journal of Hydrogen Energy, 46(57), 29732–29744. doi:10.1016/j.ijhydene.2020.08.135
  • Bayramoğlu, K., Yılmaz, S. ve Çoban, M. T. (2025). Numerical analysis of hydrogen production by methanol and methane steam reforming using compact reactors. Thermal Science and Engineering Progress, 58(January), 103238. doi:10.1016/j.tsep.2025.103238
  • Bian, Z., Xia, H., Wang, Z., Jiang, B., Yu, Y., Yu, K., … Kawi, S. (2020). CFD Simulation of a Hydrogen-Permeable Membrane Reactor for CO2Reforming of CH4: The Interplay of the Reaction and Hydrogen Permeation. Energy and Fuels, 34(10), 12366–12378. doi:10.1021/acs.energyfuels.0c02333
  • Caterpillar Motoren GmbH Co. (2016). Motor Proje Kataloğu Vm 46 df. Cherif, A., Atwair, M., Atsbha, T. A., Zarei, M., Duncan, I. J., Nebbali, R., … Lee, C. J. (2023). Enabling low-carbon membrane steam methane reforming: Comparative analysis and multi-objective NSGA-II-integrated Bayesian optimization. Energy Conversion and Management, 297(August), 117718. doi:10.1016/j.enconman.2023.117718
  • Christopher Selvam, D., Raja, T., Nagappan, B., Upadhye, V. J., Guntaj, J., Devarajan, Y. ve Mishra, R. (2025). The role of biodiesel in marine decarbonization: Technological innovations and ocean engineering challenges. Results in Engineering, 25(October 2024), 103974. doi:10.1016/j.rineng.2025.103974
  • Creutzig, F., Jochem, P., Edelenbosch, O. Y., Mattauch, L., Van Vuuren, D. P., McCollum, D. ve Minx, J. (2015). Transport: A roadblock to climate change mitigation? Science, 350(6263), 911–912. doi:10.1126/science.aac8033
  • Dinçer, I. ve Ishaq, H. (2021). Renewable hydrogen production. Elsevier.
  • Haghi, S. B., Salehi, G., Azad, M. T. ve Nichkoohi, A. L. (2020). 3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane. Petroleum Chemistry, 60(11), 1251–1259. doi:10.1134/S0965544120110109
  • He, D., Yu, Y., Kuang, Y. ve Wang, C. (2021). Model comparisons of flow and chemical kinetic mechanisms for methane-air combustion for engineering applications. Applied Sciences (Switzerland), 11(9). doi:10.3390/app11094107
  • IEA. (2023). Global Hydrogen Review 2023. International Energy Agency. OECD. doi:10.1787/a15b8442-en
  • Lao, L., Aguirre, A., Tran, A., Wu, Z., Durand, H. ve Christofides, P. D. (2016). CFD modeling and control of a steam methane reforming reactor. Chemical Engineering Science, 148, 78–92. doi:10.1016/j.ces.2016.03.038
  • Lion, S., Vlaskos, I. ve Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207(February), 112553. doi:10.1016/j.enconman.2020.112553
  • Liu, S., Leng, L., Zhou, W. ve Shi, L. (2021). Optimizing the Exhaust System of Marine Diesel Engines to Improve Low-speed Performances and Cylinder Working Conditions. Fluid Dynamics and Materials Processing, 17(4), 683–695. doi:10.32604/FDMP.2021.013575
  • Malalasekera, W. ve Versteeg, H. K. (2007). An Introduction to Computational Fluid Dynamics (C. M). doi:10.2514/1.22547
  • McGreavy, C. ve Newmann, M. W. (1969). Development of a mathematical model of a steam methane reformer. Institution of Electrical Engineering, Conference on the Industrial Applications of Dynamic Modelling içinde .
  • Nguyen, D. D., Ngo, S. I., Lim, Y. Il, Kim, W., Lee, U. Do, Seo, D. ve Yoon, W. L. (2019). Optimal design of a sleeve-type steam methane reforming reactor for hydrogen production from natural gas. International Journal of Hydrogen Energy, 44(3), 1973–1987. doi:10.1016/j.ijhydene.2018.11.188
  • Pantoleontos, G., Kikkinides, E. S. ve Georgiadis, M. C. (2012). A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor. International Journal of Hydrogen Energy, 37(21), 16346–16358. doi:10.1016/j.ijhydene.2012.02.125
  • Saha, M., Tregenza, O., Twelftree, J. ve Hulston, C. (2023). A review of thermoelectric generators for waste heat recovery in marine applications. Sustainable Energy Technologies and Assessments, 59(July), 103394. doi:10.1016/j.seta.2023.103394
  • Sun, X., Jiang, Y. C., Zhao, P., Jing, G. ve Ma, T. (2024). Effect of ammonia/hydrogen blending and injection modes on combustion emission and performance of marine engine. Fuel, 371(PA), 131894. doi:10.1016/j.fuel.2024.131894
  • Tang, Y., Liu, J., Liu, M., Feng, J., Deng, K., Zhu, S., … Li, G. (2025). Numerical studies on a novel air path design featured with the sequential turbocharging and the low-pressure exhaust gas recirculation for the marine two-stroke engine fulfilling the IMO Tier Ⅲ regulation. Energy, 328(November 2024), 136574. doi:10.1016/j.energy.2025.136574
  • Tran, A., Aguirre, A., Durand, H., Crose, M. ve Christofides, P. D. (2017). CFD modeling of a industrial-scale steam methane reforming furnace. Chemical Engineering Science, 171, 576–598. doi:10.1016/j.ces.2017.06.001
  • Zhu, S., Tang, Y., Wang, D., Bai, S., Deng, K. ve Wang, G. (2024). Numerical studies on the flow characteristic of the marine two-stroke engine integrated with the high-pressure exhaust gas recirculation system. Case Studies in Thermal Engineering, 53(May 2023), 103958. doi:10.1016/j.csite.2023.103958
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Marine Main and Auxiliaries , Marine Vehicles Management Engineering
Journal Section Research Article
Authors

Semih Yılmaz 0000-0002-0791-4476

Submission Date August 12, 2025
Acceptance Date September 20, 2025
Publication Date December 25, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Yılmaz, S. (2025). GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 17(2), 274-297. https://doi.org/10.18613/deudfd.1763493
AMA Yılmaz S. GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. December 2025;17(2):274-297. doi:10.18613/deudfd.1763493
Chicago Yılmaz, Semih. “GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 17, no. 2 (December 2025): 274-97. https://doi.org/10.18613/deudfd.1763493.
EndNote Yılmaz S (December 1, 2025) GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 17 2 274–297.
IEEE S. Yılmaz, “GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 17, no. 2, pp. 274–297, 2025, doi: 10.18613/deudfd.1763493.
ISNAD Yılmaz, Semih. “GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 17/2 (December2025), 274-297. https://doi.org/10.18613/deudfd.1763493.
JAMA Yılmaz S. GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2025;17:274–297.
MLA Yılmaz, Semih. “GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 17, no. 2, 2025, pp. 274-97, doi:10.18613/deudfd.1763493.
Vancouver Yılmaz S. GEMİ DİZEL MOTORU İLE HİDROJEN ÜRETİMİNE YÖNELİK YENİLİKÇİ EGZOZ HATTI TASARIMI VE PERFORMANS ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2025;17(2):274-97.

Articles published in this journal can not be used without referring to the journal. The authors are scientifically for their manuscripts.

Maritime Faculty Journal does not have article processing charges (APCs) or submission charges.

Dokuz Eylul University Publishing House Web Page
https://kutuphane.deu.edu.tr/yayinevi/


18320  18321 27187

18441  23882 23881  13875  


                                      27606  1388013876 27184 27186