Research Article
BibTex RIS Cite

OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ

Year 2020, , 25 - 46, 21.08.2020
https://doi.org/10.18613/deudfd.775117

Abstract

Günümüzde, ulaştırma politika alanındaki karar vericilerin karşılaştıkları temel sorun, maliyet, istihdam, gayrisafi milli hasıla, enerji tüketimi ve çevresel sorunlar kapsamında ekonomik, çevresel ve sosyal sürdürülebilirlik sağlayabilmek için bir dizi etkili politika oluşturmaktır. Bu politikalar ile ilgili olarak çoklu taşıma da, özellikle ekonomik verimliliği sağlayabilmek amacı ile uluslararası düzeyde desteklenen ve uygulanan bir taşıma sistemidir. Çoklu taşımada sürdürülebilir rota seçimi de kamu ve yük taşıyan/taşıtan karar vericileri açısından önemli ve stratejik bir karardır. Sürdürülebilir çoklu taşıma rotalarının seçimi için ilk olarak rota performans ölçümü için gerekli göstergelerin önem düzeyi tespit edilmelidir. Bu çalışmada, rota seçim kararının önemi kabul edilerek, sürdürülebilir çoklu taşıma rotası tespiti için gerekli sürdürülebilirlik göstergelerinin önem düzeyi BWM (Best-Worst Method) çok kriterli bir karar verme modeli ile tespit edilmeye çalışılmıştır.
Araştırmanın sonucunda karar vericilerin sürdürülebilir çoklu taşıma rotası seçerken kullanabilecekleri sürdürülebilirliğin üç boyutu ile ilgili göstergelerin önem düzeyi ortaya çıkarılmış ve elde edilen bu önem düzeylerinin farklı rota seçim modelleri için girdi oluşturması beklenmektedir.

References

  • Banomyong, R. ve Beresford, A. (2001). Multimodal transport: the case of Laotian garment exporters, International Journal of Physical Distribution & Logistics Management, 9, 663-685.
  • Banomyong, R. (2001). Modelling freight logistics: The Vientiane-Singapore corridor. Logistics 2001: International Conference on Integrated Logistics. Singapur.
  • Boardman, B.S., Malstrom, E.M., Butler, D.P. ve Cole, M.H. (1997). Computer assisted routing of intermodal shipments. Computers and Industrial Engineering,33, 311-314. Bookbinder, J.H. ve Fox, N.S. (1998). Intermodal routing of Canada-Mexico shipments under NAFTA. Transportation Research-E (Logistics and Transportation Rev.), 4, 289-303.
  • Brundtland Raporu. (1987). https://www.are.admin.ch/are/en/home/sustainable-development/international-cooperation/2030agenda/un-_-milestones-in-sustainable-development/1987--brundtland-report.html, Erişim Tarihi: 12.08.2018.
  • Chang, T.S. (2007). Best routes selection in international intermodal networks. Computers & Operations Research, 35, 2877-2891.
  • Cho, J.H., Kim, H.S. ve Choi, H.R. (2010). An intermodal transport network planning algorithm using dynamic programming-A case study: from Busan to Rotterdam in intermodal freight routing. Apll. Intell, 36, 529-541.
  • Craig, T. (1973). A behavioral model of modal selection, Penn State University. Transportation Journal, 12,3, 24-28.
  • Çetinkaya, V. ve Deveci, A. (2019). Sürdürülebilir çoklu ulaştırma göstergelerinin belirlenmesi. 4. Ulusal Liman Kongresi, İzmir.
  • Grasman, S.E. (2006). Dynamic approach to strategic and operational multimodal routing decisions. International Journal of Logistics Systems and Management, 1, 96-106.
  • Guo, S. ve Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23-31.
  • Hao, C. ve Yue, Y. (2016). Optimization on combination of Transport Routes and Modes on Dynamic Programming for a Container Multimodal Transport. Procedia Engineering, 137, 382-390.
  • Jeon, C.M., Amekudzi, A.A., Guensler R.L. (2013). Sustainability assessment at the transportation planning level: performance measures and indexes. Transport Policy, 25, 10-21.
  • Karaman, B. (2014). 0-1 Hedef programlama destekli bütünleşik AHP-VIKOR yöntemi: Hastane yapımı projeleri seçimi, Yüksek Lisans Tezi, Gazi Üniversitesi End. Müh, Ankara.
  • Kengpol, A., Meethom, W. ve Touminen, M. (2011). The development of a decision support system in multimodal transportation routing within greater Mekong sub-region countries. International Journal of Production Economics, 140, 691-701.
  • Kengpol, A., Tuamee, S., Meethom, W. ve Touminen, M. (2012). Design of a decision support system on selection of multimodal transportation with environmental consideration between Thailand and Vietnam. AIJSTPME, 2, 55-63.
  • Kim H.J. ve Chang, Y.Y. (2014). Analysis of an intermodal transportation network in Korea from an environmental perspective. Transportation Journal, 1, 79-106.
  • Kopytov, E. ve Abramov, D. (2012). Multiple-criteria analysis and choice of transportation alternatives in multimodal freight transport system. Transport and Telecommunication, 13, 148-158.
  • Litman, T. ve Burwell, D. (2006). Issues in sustainable transportation. International Journal of Global Environmental Issues, 4, 331-347.
  • Litman, T. (2007). Developing indicators for comprehensive and sustainable transport planning. Transportation Research Record: Journal of the Transportation Research Board, 2007, 10-15.
  • Litman, T. (2019). Developing indicators for sustainable and livable transport planning. Victoria Transport Policy Institute, https://www.vtpi.org/wellmeas.pdf, Erişim Tarihi: 12.10.2019.
  • Moon, D., Kim, D. ve Lee, E. (2015). A study on competitiveness of sea transport by comparing international transport routes between Korea and EU. The Asian Journal of Shipping and Logistics, 1, 1-20.
  • Omann, I. ve Spaangenberg, J.H. (2002). Assessing social sustainability. Biennial Conference of the International Society for Ecological Economics. Tunus.
  • Pham, T.Y. ve Yeo, G.T. (2018). A comperative analysis selecting the transport routes of electronics components from China to Vietnam. Sustainability,10, 1-18.
  • Qu, L. ve Chen, Y. (2008). A hybrid MCDM method for route selection of multimodal transportation network. LNCS, 5263, 374-383.
  • Rajak, S., Parthiban, P. ve Dhanalakshmi, R. (2016). Sustainable transportation systems performance evaluation using fuzzy logic. Ecological Indicators, 71, 503-513.
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130.
  • Rezaei, J., Nispeling, T., Sarkis, J. ve Tavasszy, L. (2016). A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. Journal of Cleaner Production, 135, 577-588.
  • Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathl Modelling, 9, 3-5, 161-176.
  • Seo, Y.J., Chen, F. ve Roh S.Y. (2017). Multimodal transportation: the case of laptop from Chongqing in China to Rotterdam in Europe. The Asian Journal of Shipping and Logistics, 3, 155-165.
  • Turan, G. (2015). Çok Kriterli Karar Verme. B.F. Yıldırım, (Ed.), E. Önder, (Ed.), Çok Kriterli Karar Verme Yöntemleri (s.15-20). Bursa: Dora Yayınevi.
  • UNCTAD (1981). Review of Maritime Transport Report. https://unctad.org/en/PublicationsLibrary/rmt1981_en.pdf, Erişim Tarihi: 03.01.2019.
  • UNCTAD (2015). World Investment Report. https://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=1358, Erişim Tarihi: 03.01.2019.
  • Yang, X., Low, J. ve Tang, L.C. (2011). Analysis of intermodal freight from China to Indian Ocean: A goal programming approach. Journal of Transport Geography, 19, 515-527.

DETERMINING THE IMPORTANCE LEVEL OF THE INDICATORS TO SELECT THE OPTIMAL SUSTAINABLE INTERMODAL TRANSPORT ROUTES THROUGH A MULTI-CRITERIA DECISION MAKING METHOD

Year 2020, , 25 - 46, 21.08.2020
https://doi.org/10.18613/deudfd.775117

Abstract

The basic challenge recently encountered by the decision makers involved in transport policies is to create a set of effective policies so as to provide economic, environmental and social sustainability as a response to various difficulties suffered in costs, employment, gross national product, energy consumption and environmental concerns. One of the transport policies worked on is related to multimodal transportation which has beeen an internationally practiced, promoted and accepted transportation system known for its advantages in gaining economic efficiency in particular. Selecting sustainable routes in intermodal transport has been important and strategic decision to be considered by the decision makers involved in cargo carriers/shippers. To select the sustainable routes in intermodal transport, the very first thing to do is to determine the importance levels of the indicators required to measure the route performances, having considered the importance of the decisions in route selection. This study aims to determine the importance levels of the sustainability indicators required in selection of sustainable intermodal routes by means of a multi-criteria decision making method; called BWM (Best-Worst Method). As a result of this study, the importance level of the indicators regarding the three dimensions of sustainability which could be made use of while making decisions in selecting sustainable routes in intermodal transport has been revealed, and the determined importance values could be used as inputs in diverse route choice models.

References

  • Banomyong, R. ve Beresford, A. (2001). Multimodal transport: the case of Laotian garment exporters, International Journal of Physical Distribution & Logistics Management, 9, 663-685.
  • Banomyong, R. (2001). Modelling freight logistics: The Vientiane-Singapore corridor. Logistics 2001: International Conference on Integrated Logistics. Singapur.
  • Boardman, B.S., Malstrom, E.M., Butler, D.P. ve Cole, M.H. (1997). Computer assisted routing of intermodal shipments. Computers and Industrial Engineering,33, 311-314. Bookbinder, J.H. ve Fox, N.S. (1998). Intermodal routing of Canada-Mexico shipments under NAFTA. Transportation Research-E (Logistics and Transportation Rev.), 4, 289-303.
  • Brundtland Raporu. (1987). https://www.are.admin.ch/are/en/home/sustainable-development/international-cooperation/2030agenda/un-_-milestones-in-sustainable-development/1987--brundtland-report.html, Erişim Tarihi: 12.08.2018.
  • Chang, T.S. (2007). Best routes selection in international intermodal networks. Computers & Operations Research, 35, 2877-2891.
  • Cho, J.H., Kim, H.S. ve Choi, H.R. (2010). An intermodal transport network planning algorithm using dynamic programming-A case study: from Busan to Rotterdam in intermodal freight routing. Apll. Intell, 36, 529-541.
  • Craig, T. (1973). A behavioral model of modal selection, Penn State University. Transportation Journal, 12,3, 24-28.
  • Çetinkaya, V. ve Deveci, A. (2019). Sürdürülebilir çoklu ulaştırma göstergelerinin belirlenmesi. 4. Ulusal Liman Kongresi, İzmir.
  • Grasman, S.E. (2006). Dynamic approach to strategic and operational multimodal routing decisions. International Journal of Logistics Systems and Management, 1, 96-106.
  • Guo, S. ve Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23-31.
  • Hao, C. ve Yue, Y. (2016). Optimization on combination of Transport Routes and Modes on Dynamic Programming for a Container Multimodal Transport. Procedia Engineering, 137, 382-390.
  • Jeon, C.M., Amekudzi, A.A., Guensler R.L. (2013). Sustainability assessment at the transportation planning level: performance measures and indexes. Transport Policy, 25, 10-21.
  • Karaman, B. (2014). 0-1 Hedef programlama destekli bütünleşik AHP-VIKOR yöntemi: Hastane yapımı projeleri seçimi, Yüksek Lisans Tezi, Gazi Üniversitesi End. Müh, Ankara.
  • Kengpol, A., Meethom, W. ve Touminen, M. (2011). The development of a decision support system in multimodal transportation routing within greater Mekong sub-region countries. International Journal of Production Economics, 140, 691-701.
  • Kengpol, A., Tuamee, S., Meethom, W. ve Touminen, M. (2012). Design of a decision support system on selection of multimodal transportation with environmental consideration between Thailand and Vietnam. AIJSTPME, 2, 55-63.
  • Kim H.J. ve Chang, Y.Y. (2014). Analysis of an intermodal transportation network in Korea from an environmental perspective. Transportation Journal, 1, 79-106.
  • Kopytov, E. ve Abramov, D. (2012). Multiple-criteria analysis and choice of transportation alternatives in multimodal freight transport system. Transport and Telecommunication, 13, 148-158.
  • Litman, T. ve Burwell, D. (2006). Issues in sustainable transportation. International Journal of Global Environmental Issues, 4, 331-347.
  • Litman, T. (2007). Developing indicators for comprehensive and sustainable transport planning. Transportation Research Record: Journal of the Transportation Research Board, 2007, 10-15.
  • Litman, T. (2019). Developing indicators for sustainable and livable transport planning. Victoria Transport Policy Institute, https://www.vtpi.org/wellmeas.pdf, Erişim Tarihi: 12.10.2019.
  • Moon, D., Kim, D. ve Lee, E. (2015). A study on competitiveness of sea transport by comparing international transport routes between Korea and EU. The Asian Journal of Shipping and Logistics, 1, 1-20.
  • Omann, I. ve Spaangenberg, J.H. (2002). Assessing social sustainability. Biennial Conference of the International Society for Ecological Economics. Tunus.
  • Pham, T.Y. ve Yeo, G.T. (2018). A comperative analysis selecting the transport routes of electronics components from China to Vietnam. Sustainability,10, 1-18.
  • Qu, L. ve Chen, Y. (2008). A hybrid MCDM method for route selection of multimodal transportation network. LNCS, 5263, 374-383.
  • Rajak, S., Parthiban, P. ve Dhanalakshmi, R. (2016). Sustainable transportation systems performance evaluation using fuzzy logic. Ecological Indicators, 71, 503-513.
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130.
  • Rezaei, J., Nispeling, T., Sarkis, J. ve Tavasszy, L. (2016). A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. Journal of Cleaner Production, 135, 577-588.
  • Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathl Modelling, 9, 3-5, 161-176.
  • Seo, Y.J., Chen, F. ve Roh S.Y. (2017). Multimodal transportation: the case of laptop from Chongqing in China to Rotterdam in Europe. The Asian Journal of Shipping and Logistics, 3, 155-165.
  • Turan, G. (2015). Çok Kriterli Karar Verme. B.F. Yıldırım, (Ed.), E. Önder, (Ed.), Çok Kriterli Karar Verme Yöntemleri (s.15-20). Bursa: Dora Yayınevi.
  • UNCTAD (1981). Review of Maritime Transport Report. https://unctad.org/en/PublicationsLibrary/rmt1981_en.pdf, Erişim Tarihi: 03.01.2019.
  • UNCTAD (2015). World Investment Report. https://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=1358, Erişim Tarihi: 03.01.2019.
  • Yang, X., Low, J. ve Tang, L.C. (2011). Analysis of intermodal freight from China to Indian Ocean: A goal programming approach. Journal of Transport Geography, 19, 515-527.
There are 34 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Volkan Çetinkaya 0000-0001-8921-1311

Durmuş Ali Deveci This is me 0000-0001-8348-073X

Publication Date August 21, 2020
Published in Issue Year 2020

Cite

APA Çetinkaya, V., & Deveci, D. A. (2020). OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12(1), 25-46. https://doi.org/10.18613/deudfd.775117
AMA Çetinkaya V, Deveci DA. OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. August 2020;12(1):25-46. doi:10.18613/deudfd.775117
Chicago Çetinkaya, Volkan, and Durmuş Ali Deveci. “OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12, no. 1 (August 2020): 25-46. https://doi.org/10.18613/deudfd.775117.
EndNote Çetinkaya V, Deveci DA (August 1, 2020) OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12 1 25–46.
IEEE V. Çetinkaya and D. A. Deveci, “OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 12, no. 1, pp. 25–46, 2020, doi: 10.18613/deudfd.775117.
ISNAD Çetinkaya, Volkan - Deveci, Durmuş Ali. “OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12/1 (August 2020), 25-46. https://doi.org/10.18613/deudfd.775117.
JAMA Çetinkaya V, Deveci DA. OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020;12:25–46.
MLA Çetinkaya, Volkan and Durmuş Ali Deveci. “OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 12, no. 1, 2020, pp. 25-46, doi:10.18613/deudfd.775117.
Vancouver Çetinkaya V, Deveci DA. OPTİMAL SÜRDÜRÜLEBİLİR ROTA TESPİTİ İÇİN GEREKLİ GÖSTERGELERİN BİR ÇOK KRİTERLİ KARAR VERME YÖNTEMİ İLE ÖNEM DÜZEYİ TESPİTİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020;12(1):25-46.

Dergimizde yayınlanmış makaleler kaynak gösterilmeden kullanılamaz

Dergideki yazıların bilimsel sorumluluğu yazarlarına aittir.

Denizcilik Fakültesi Dergisinin içeriği tüm kullanıcılara ücretsiz olarak sunulmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/deudfd/contacts


download    download   download

                                               18441     23882   23881      13875                                                                     27606  13880 13876  27184   download