Research Article
BibTex RIS Cite

DENİZ TAŞITLARI İÇİN ORC ENTEGRELİ BİR ATIK ISI GERİ KAZANIM SİSTEMİNİN EKSERJİ TABANLI SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRMESİ

Year 2021, , 109 - 134, 06.09.2021
https://doi.org/10.18613/deudfd.969098

Abstract

Bu çalışma, ilk aşamada ekserji tabanlı sürdürülebilirlik değerlendirmesinin temellerini ve içinde şekillendiği çerçeveyi tanıtmaktadır. Sürdürülebilirlik değerlendirmesi çerçevesi, politika yapıcılara ve karar verme süreçlerine yardımcı olmak için kullanılan sürdürülebilirlik göstergelerine yönlendirmektedir. Literatür taraması, çevresel bir bakış açısından enerji sistemlerinin ekserji tabanlı değerlendirme araçları ve göstergeleri ile sürdürülebilirlik değerlendirmesine uygun olduğunu göstermektedir. Bu çalışmada, 1.221 TEU'luk bir konteyner gemisi için tasarlanmış ORC (organik Rankine çevrimi) entegreli bir atık ısı geri kazanım sisteminin ekserji analiz sonuçları kullanılarak ekserji tabanlı bir sürdürülebilirlik değerlendirmesi yapılmıştır. Önerilen atık ısı geri kazanım sistemi tasarımının sürdürülebilirlik düzeyini ve daha fazla iyileştirme potansiyelini ortaya koyan karşılaştırılabilir ve nicel ekserjetik sürdürülebilirlik göstergelerini türetmek için ekserji analizi sonuçları kullanılarak, kullanılmıştır. Değerlendirme sonuçları, minimum atık ekserji oranının 3 MPa'da 0,106 değerinde R1234ze(Z) akışkanından elde edildiğini göstermiştir. R1234ze(Z) ve R245fa iş akışkanları, önerilen sistem tasarımı için oldukça iyi bir çevresel performans göstermektedir. Maksimum ekserjetik sürdürülebilirlik indeksi 8.435 değerinde 3 MPa'da R1234ze(Z)'den elde edilmiştir.

References

  • Abam, F.I., Briggs, T.A., Ekwe, B.E., Samuel, O., and Effiom, S.O. (2017). Investigation of intercooler-effectiveness on exergo-economic and exergo-sustainability parameters of modified brayton cycles. Case Studies in Thermal Engineering, 10, 9–18.
  • Abam, F. I., Ekwe, E. B., Effiom, S. O., and Afangideh, C. B. (2018a). Performance and thermo-sustainability analysis of non-hybrid organic Rankine cycles (ORCs) at varying heat source and evaporator conditions. Australian Journal of Mechanical Engineering, 16(3), 238-248.
  • Abam, F. I., Ekwe, E. B., Effiom, S. O., and Ndukwu, M. C. (2018b). A comparative performance analysis and thermo-sustainability indicators of modified low-heat organic Rankine cycles (ORCs): An exergy-based procedure. Energy Reports, 4, 110-118.
  • Abam, F. I., Ekwe, E. B., Effiom, S. O., Ndukwu, M. C., Briggs, T. A., and Kadurumba, C. H. (2018c). Optimum exergetic performance parameters and thermo-sustainability indicators of low-temperature modified organic Rankine cycles (ORCs). Sustainable Energy Technologies and Assessments, 30, 91-104.
  • Acar, C. and Dincer, I. (2014). Energy and exergy analyses of a zero emission power plant for coproduction of electricity and methanol. In Progress in Exergy, Energy, and the Environment, (145-156). Cham: Springer.
  • Ataei, A., Safari, F., and Choi, J. K. (2015). Thermodynamic performance analysis of different organic Rankine cycles to generate power from renewable energy resources. American Journal of Renewable and Sustainable Energy, 1(2), 31-38.
  • Aydin, H. (2013). Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle. Energy, 57, 766–774.
  • Aydin, H., Turan, O., Karakoc, T. H., and Midilli, A. (2015). Exergetic sustainability indicators as a tool in commercial aircraft: A case study for a turbofan engine. International Journal of Green Energy, 12(1), 28-40.
  • Aygun, H. and Turan, O. (2020). Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes. Energy, 195, 117008.
  • Baklacioglu, T., Turan, O., and Aydin, H. (2018). Metaheuristic approach for an artificial neural network: Exergetic sustainability and environmental effect of a business aircraft. Transportation Research, Part D: Transport and Environment, 63, 445-465.
  • Balli, O. and Hepbasli, A. (2014). Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy, 64, 582-600.
  • Balta, M. T., Dincer, I., and Hepbasli, A. (2010). Performance and sustainability assessment of energy options for building HVAC applications. Energy and Buildings, 42(8), 1320-1328.
  • Baral, S., Kim, D., Yun, E., and Kim, K. C. (2015). Experimental and thermoeconomic analysis of small-scale solar organic Rankine cycle (SORC) system. Entropy, 17(4), 2039-2061.
  • Caglayan, H. and Caliskan, H. (2018). Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Applied Thermal Engineering, 136, 504-515.
  • Caliskan, H. and Hepbasli, A. (2011). Exergetic cost analysis and sustainability assessment of an internal combustion engine. International Journal of Exergy, 8(3), 310-324.
  • Caliskan, H., Hepbasli, A., and Dincer, I. (2011). Exergy analysis and sustainability assessment of a solar-ground based heat pump with thermal energy storage. Journal of Solar Energy Engineering, 133(1), 011005.
  • Chowdhury, T., Chowdhury, H., Chowdhury, P., Sait, S. M., Paul, A., Ahamed, J. U., and Saidur, R. (2020a). A case study to application of exergy-based indicators to address the sustainability of Bangladesh residential sector. Sustainable Energy Technologies and Assessments, 37, 100615.
  • Chowdhury, H., Chowdhury, T., Hossain, N., Chowdhury, P., Salam, B., Sait, S. M., et al. (2020b). Exergetic sustainability analysis of industrial furnace: a case study. Environmental Science and Pollution Research, 28(10), 1-8.
  • Dincer, I. and Zamfirescu, C. (2018). Sustainable dimensions of energy. In Comprehensive Energy Systems, Volume 1: Energy Fundamentals. (102-151). Amsterdam: Elsevier.
  • Ekici, S., Sohret, Y., Coban, K., Altuntas, O., and Karakoc, T. H. (2018). Sustainability metrics of a small scale turbojet engine. International Journal of Turbo & Jet-Engines, 35(2), 113-119.
  • Gabrielsen, P., and Bosch, P. (2003). Environmental indicators: typology and use in reporting. https://www.researchgate.net/publication/237573469_Environmental_Indicators_Typology_and_Use_in_Reporting. Access Date: 01.03.2019.
  • Gingerich, D. B., and Mauter, M. S. (2015). Quantity, quality, and availability of waste heat from United States thermal power generation. Environmental Science & Technology, 49(14), 8297-8306.
  • Hacatoglu, K., Dincer, I., and Rosen, M. A. (2015). A new model to assess the environmental impact and sustainability of energy systems. Journal of Cleaner Production, 103, 211-218.
  • Jankowski, M. and Borsukiewicz, A. (2020). A novel exergy indicator for maximizing energy utilization in low-temperature ORC. Energies, 13(7), 1598.
  • Kalikatzarakis, M. and Frangopoulos, C. (2015). Multi-criteria selection and thermo-economic optimization of organic Rankine cycle system for a marine application. International Journal of Thermodynamics, 18(2), 133-141.
  • Konur, O., Saatcioglu, O. Y., Korkmaz, S. A., Erdogan, A., and Colpan, C. O. (2020). Heat exchanger network design of an organic Rankine cycle integrated waste heat recovery system of a marine vessel using pinch point analysis. International Journal of Energy Research, 44(15), 12312-12328.
  • Kristensen, P. (2004). The DPSIR Framework. https://wwz.ifremer.fr/dce/content/download/69291/913220/.../DPSIR.pdf, Access Date: 12.04.2021.
  • Linde Industrial Gases. (2021). Refrigerants. https://www.linde-gas.com/en/products_and_supply/refrigerants/index.html, Access Date: 16.01.2021.
  • Linke, B., Das, J., Lam, M., and Ly, C. (2014). Sustainability indicators for finishing operations based on process performance and part quality. Procedia CIRP, 14, 564-569.
  • Maniali, B. and Silveira, S. (2015). Using a sustainability index to assess energy technologies for rural electrification. Renewable and Sustainable Energy Reviews, 41, 1351-1365.
  • Midilli, A., Kucuk, H., and Dincer, I. (2012). Environmental and sustainability aspects of a recirculating aquaculture system. Environmental Progress & Sustainable Energy, 31(4), 604-611.
  • Nami, H. and Anvari-Moghaddam, A. (2020). Small-scale CCHP systems for waste heat recovery from cement plants: thermodynamic, sustainability and economic implications. Energy, 192, 116634.
  • Ness, B., Urbel-Piirsalu, E., Anderberg, S., and Olsson, L. (2007). Categorising tools for sustainability assessment. Ecological Economics, 60(3), 498-508.
  • Ozcan, H. and Dincer, I. (2014). Thermodynamic analysis of a solar driven tri-generation system for building applications. In Progress in exergy, energy, and the environment (169-180). Cham: Springer.
  • Refrigerant Report. (2020). Refrigerant report. https://www.bitzer-refrigerantreport.com/fileadmin/user_upload/A-501-20.pdf, Access Date: 16.01.2021.
  • Rosen, M. A., and Dincer, I. (2001). Exergy as the confluence of energy, environment and sustainable development. Exergy, An International Journal, 1(1), 3-13.
  • Rosen, M. A., Dincer, I., and Kanoglu, M. (2008). Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy, 36(1), 128-137.
  • Sahu, M. K., Choudhary, T., Kumari, A., and Sanjay, R. (2018). Thermoeconomic, sustainability and environmental damage cost analysis of air cooled CT7-7A turboprop engine. SAE Technical Paper, 2018-01-0774(2018), 1-12.
  • Söğüt, M. Z. (2018). Exergetic irreversibility and sustainability performances for alternative fuels in the micro-turbojet engine. International Journal of Green Energy, 15(3), 169-180.
  • Srinivasan, R. S., Braham, W. W., Campbell, D. E., Curcija, D. C., and Rinker, M. E. (2011). Sustainability assessment frameworks, evaluation tools and metrics for buildings and its environment – a review. In Proceedings of Building Simulation: 12th Conference of International Building Performance Simulation Association, 2011, Sydney. (350-357). USA: BPSAB.
  • Stougie, L. (2014). Exergy and sustainability: Insights into the value of exergy analysis in sustainability assessment of technological systems. Ph.D. Thesis, Delft University of Technology, Delft.
  • Stougie, L., Tsalidis, G. A., van der Kooi, H. J., and Korevaar, G. (2018). Environmental and exergetic sustainability assessment of power generation from biomass. Renewable Energy, 128, 520-528.
  • Şöhret, Y., Ekici, S., Altuntaş, Ö., Hepbasli, A., and Karakoç, T. H. (2016). Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 83, 57-69.
  • Tsougranis, E. L., and Wu, D. (2018). A feasibility study of organic Rankine cycle (ORC) power generation using thermal and cryogenic waste energy on board an LNG passenger vessel. International Journal of Energy Research, 42(9), 3121-3142.
  • Turan, O. and Aydin, H. (2016). Exergy-based sustainability analysis of a low-bypass turbofan engine: a case study for JT8D. Energy Procedia, 95, 499-506.
  • Turan, O., Aydin, H., Karakoc, T. H., and Midilli, A. (2014). Some exergetic measures of a JT8D turbofan engine. Journal of Automation and Control Engineering. 2(2), 110-114.
  • Visentin, C., da Silva Trentin, A. W., Braun, A. B., and Thomé, A. (2020). Life cycle sustainability assessment: a systematic literature review through the application perspective, indicators, and methodologies. Journal of Cleaner Production, 270(2020), 122509.
  • Wall, G. (1997). Exergy use in the Swedish society. In Proceedings of the International Conference on Thermodynamic Analysis and Improvement of Energy Systems. (403-413). Beijing, China: World Pubs. Corp.
  • Walter, M. (2013). DPSIR. http://www.ejolt.org/2013/02/dpsir/, Access Date: 30.01.2021.
  • Wu, X. F., Chen, G. Q., Wu, X. D., Yang, Q., Alsaedi, A., Hayat, T., and Ahmad, B. (2015). Renewability and sustainability of biogas system: cosmic exergy based assessment for a case in China. Renewable and Sustainable Energy Reviews, 51, 1509-1524.
  • Yuksel, B., Balli, O., Gunerhan, H., Hepbasli, A., and Atalay, H. (2020). Exergetic and environmental analyses of turbojet engine. In Environmentally-benign energy solutions. (387-401). Cham: Springer.

EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS

Year 2021, , 109 - 134, 06.09.2021
https://doi.org/10.18613/deudfd.969098

Abstract

This paper introduces the basics of exergy based sustainability assessment and the framework that should be shaped within in the first stage. The sustainability assessment framework leads to sustainability indicators that are used to assist policy makers and decision-making processes. The literature review shows that the energy systems are suited to sustainability assessment with exergy based assessment tools and indicators from an environmental point of view. In this study, an exergy based sustainability assessment is carried out by using the exergy analyses results of an ORC (organic Rankine cycle) integrated waste heat recovery system on a 1,221 TEU container ship. The exergy analysis results are used to derive comparable and quantified exergetic sustainability indicators that indicate the sustainability level and further improvement potentials with the utilization of the proposed waste heat recovery system design. The assessment results show that the minimum waste exergy ratio is obtained from R1234ze(Z) at 3 MPa with the value of 0.106. R1234ze(Z) and R245fa working fluids show good environmental performance for the proposed system design. The maximum exergetic sustainability index values are obtained from R1234ze(Z) and at 3 MPa at the value of 8.435.

References

  • Abam, F.I., Briggs, T.A., Ekwe, B.E., Samuel, O., and Effiom, S.O. (2017). Investigation of intercooler-effectiveness on exergo-economic and exergo-sustainability parameters of modified brayton cycles. Case Studies in Thermal Engineering, 10, 9–18.
  • Abam, F. I., Ekwe, E. B., Effiom, S. O., and Afangideh, C. B. (2018a). Performance and thermo-sustainability analysis of non-hybrid organic Rankine cycles (ORCs) at varying heat source and evaporator conditions. Australian Journal of Mechanical Engineering, 16(3), 238-248.
  • Abam, F. I., Ekwe, E. B., Effiom, S. O., and Ndukwu, M. C. (2018b). A comparative performance analysis and thermo-sustainability indicators of modified low-heat organic Rankine cycles (ORCs): An exergy-based procedure. Energy Reports, 4, 110-118.
  • Abam, F. I., Ekwe, E. B., Effiom, S. O., Ndukwu, M. C., Briggs, T. A., and Kadurumba, C. H. (2018c). Optimum exergetic performance parameters and thermo-sustainability indicators of low-temperature modified organic Rankine cycles (ORCs). Sustainable Energy Technologies and Assessments, 30, 91-104.
  • Acar, C. and Dincer, I. (2014). Energy and exergy analyses of a zero emission power plant for coproduction of electricity and methanol. In Progress in Exergy, Energy, and the Environment, (145-156). Cham: Springer.
  • Ataei, A., Safari, F., and Choi, J. K. (2015). Thermodynamic performance analysis of different organic Rankine cycles to generate power from renewable energy resources. American Journal of Renewable and Sustainable Energy, 1(2), 31-38.
  • Aydin, H. (2013). Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle. Energy, 57, 766–774.
  • Aydin, H., Turan, O., Karakoc, T. H., and Midilli, A. (2015). Exergetic sustainability indicators as a tool in commercial aircraft: A case study for a turbofan engine. International Journal of Green Energy, 12(1), 28-40.
  • Aygun, H. and Turan, O. (2020). Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes. Energy, 195, 117008.
  • Baklacioglu, T., Turan, O., and Aydin, H. (2018). Metaheuristic approach for an artificial neural network: Exergetic sustainability and environmental effect of a business aircraft. Transportation Research, Part D: Transport and Environment, 63, 445-465.
  • Balli, O. and Hepbasli, A. (2014). Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy, 64, 582-600.
  • Balta, M. T., Dincer, I., and Hepbasli, A. (2010). Performance and sustainability assessment of energy options for building HVAC applications. Energy and Buildings, 42(8), 1320-1328.
  • Baral, S., Kim, D., Yun, E., and Kim, K. C. (2015). Experimental and thermoeconomic analysis of small-scale solar organic Rankine cycle (SORC) system. Entropy, 17(4), 2039-2061.
  • Caglayan, H. and Caliskan, H. (2018). Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Applied Thermal Engineering, 136, 504-515.
  • Caliskan, H. and Hepbasli, A. (2011). Exergetic cost analysis and sustainability assessment of an internal combustion engine. International Journal of Exergy, 8(3), 310-324.
  • Caliskan, H., Hepbasli, A., and Dincer, I. (2011). Exergy analysis and sustainability assessment of a solar-ground based heat pump with thermal energy storage. Journal of Solar Energy Engineering, 133(1), 011005.
  • Chowdhury, T., Chowdhury, H., Chowdhury, P., Sait, S. M., Paul, A., Ahamed, J. U., and Saidur, R. (2020a). A case study to application of exergy-based indicators to address the sustainability of Bangladesh residential sector. Sustainable Energy Technologies and Assessments, 37, 100615.
  • Chowdhury, H., Chowdhury, T., Hossain, N., Chowdhury, P., Salam, B., Sait, S. M., et al. (2020b). Exergetic sustainability analysis of industrial furnace: a case study. Environmental Science and Pollution Research, 28(10), 1-8.
  • Dincer, I. and Zamfirescu, C. (2018). Sustainable dimensions of energy. In Comprehensive Energy Systems, Volume 1: Energy Fundamentals. (102-151). Amsterdam: Elsevier.
  • Ekici, S., Sohret, Y., Coban, K., Altuntas, O., and Karakoc, T. H. (2018). Sustainability metrics of a small scale turbojet engine. International Journal of Turbo & Jet-Engines, 35(2), 113-119.
  • Gabrielsen, P., and Bosch, P. (2003). Environmental indicators: typology and use in reporting. https://www.researchgate.net/publication/237573469_Environmental_Indicators_Typology_and_Use_in_Reporting. Access Date: 01.03.2019.
  • Gingerich, D. B., and Mauter, M. S. (2015). Quantity, quality, and availability of waste heat from United States thermal power generation. Environmental Science & Technology, 49(14), 8297-8306.
  • Hacatoglu, K., Dincer, I., and Rosen, M. A. (2015). A new model to assess the environmental impact and sustainability of energy systems. Journal of Cleaner Production, 103, 211-218.
  • Jankowski, M. and Borsukiewicz, A. (2020). A novel exergy indicator for maximizing energy utilization in low-temperature ORC. Energies, 13(7), 1598.
  • Kalikatzarakis, M. and Frangopoulos, C. (2015). Multi-criteria selection and thermo-economic optimization of organic Rankine cycle system for a marine application. International Journal of Thermodynamics, 18(2), 133-141.
  • Konur, O., Saatcioglu, O. Y., Korkmaz, S. A., Erdogan, A., and Colpan, C. O. (2020). Heat exchanger network design of an organic Rankine cycle integrated waste heat recovery system of a marine vessel using pinch point analysis. International Journal of Energy Research, 44(15), 12312-12328.
  • Kristensen, P. (2004). The DPSIR Framework. https://wwz.ifremer.fr/dce/content/download/69291/913220/.../DPSIR.pdf, Access Date: 12.04.2021.
  • Linde Industrial Gases. (2021). Refrigerants. https://www.linde-gas.com/en/products_and_supply/refrigerants/index.html, Access Date: 16.01.2021.
  • Linke, B., Das, J., Lam, M., and Ly, C. (2014). Sustainability indicators for finishing operations based on process performance and part quality. Procedia CIRP, 14, 564-569.
  • Maniali, B. and Silveira, S. (2015). Using a sustainability index to assess energy technologies for rural electrification. Renewable and Sustainable Energy Reviews, 41, 1351-1365.
  • Midilli, A., Kucuk, H., and Dincer, I. (2012). Environmental and sustainability aspects of a recirculating aquaculture system. Environmental Progress & Sustainable Energy, 31(4), 604-611.
  • Nami, H. and Anvari-Moghaddam, A. (2020). Small-scale CCHP systems for waste heat recovery from cement plants: thermodynamic, sustainability and economic implications. Energy, 192, 116634.
  • Ness, B., Urbel-Piirsalu, E., Anderberg, S., and Olsson, L. (2007). Categorising tools for sustainability assessment. Ecological Economics, 60(3), 498-508.
  • Ozcan, H. and Dincer, I. (2014). Thermodynamic analysis of a solar driven tri-generation system for building applications. In Progress in exergy, energy, and the environment (169-180). Cham: Springer.
  • Refrigerant Report. (2020). Refrigerant report. https://www.bitzer-refrigerantreport.com/fileadmin/user_upload/A-501-20.pdf, Access Date: 16.01.2021.
  • Rosen, M. A., and Dincer, I. (2001). Exergy as the confluence of energy, environment and sustainable development. Exergy, An International Journal, 1(1), 3-13.
  • Rosen, M. A., Dincer, I., and Kanoglu, M. (2008). Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy, 36(1), 128-137.
  • Sahu, M. K., Choudhary, T., Kumari, A., and Sanjay, R. (2018). Thermoeconomic, sustainability and environmental damage cost analysis of air cooled CT7-7A turboprop engine. SAE Technical Paper, 2018-01-0774(2018), 1-12.
  • Söğüt, M. Z. (2018). Exergetic irreversibility and sustainability performances for alternative fuels in the micro-turbojet engine. International Journal of Green Energy, 15(3), 169-180.
  • Srinivasan, R. S., Braham, W. W., Campbell, D. E., Curcija, D. C., and Rinker, M. E. (2011). Sustainability assessment frameworks, evaluation tools and metrics for buildings and its environment – a review. In Proceedings of Building Simulation: 12th Conference of International Building Performance Simulation Association, 2011, Sydney. (350-357). USA: BPSAB.
  • Stougie, L. (2014). Exergy and sustainability: Insights into the value of exergy analysis in sustainability assessment of technological systems. Ph.D. Thesis, Delft University of Technology, Delft.
  • Stougie, L., Tsalidis, G. A., van der Kooi, H. J., and Korevaar, G. (2018). Environmental and exergetic sustainability assessment of power generation from biomass. Renewable Energy, 128, 520-528.
  • Şöhret, Y., Ekici, S., Altuntaş, Ö., Hepbasli, A., and Karakoç, T. H. (2016). Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, 83, 57-69.
  • Tsougranis, E. L., and Wu, D. (2018). A feasibility study of organic Rankine cycle (ORC) power generation using thermal and cryogenic waste energy on board an LNG passenger vessel. International Journal of Energy Research, 42(9), 3121-3142.
  • Turan, O. and Aydin, H. (2016). Exergy-based sustainability analysis of a low-bypass turbofan engine: a case study for JT8D. Energy Procedia, 95, 499-506.
  • Turan, O., Aydin, H., Karakoc, T. H., and Midilli, A. (2014). Some exergetic measures of a JT8D turbofan engine. Journal of Automation and Control Engineering. 2(2), 110-114.
  • Visentin, C., da Silva Trentin, A. W., Braun, A. B., and Thomé, A. (2020). Life cycle sustainability assessment: a systematic literature review through the application perspective, indicators, and methodologies. Journal of Cleaner Production, 270(2020), 122509.
  • Wall, G. (1997). Exergy use in the Swedish society. In Proceedings of the International Conference on Thermodynamic Analysis and Improvement of Energy Systems. (403-413). Beijing, China: World Pubs. Corp.
  • Walter, M. (2013). DPSIR. http://www.ejolt.org/2013/02/dpsir/, Access Date: 30.01.2021.
  • Wu, X. F., Chen, G. Q., Wu, X. D., Yang, Q., Alsaedi, A., Hayat, T., and Ahmad, B. (2015). Renewability and sustainability of biogas system: cosmic exergy based assessment for a case in China. Renewable and Sustainable Energy Reviews, 51, 1509-1524.
  • Yuksel, B., Balli, O., Gunerhan, H., Hepbasli, A., and Atalay, H. (2020). Exergetic and environmental analyses of turbojet engine. In Environmentally-benign energy solutions. (387-401). Cham: Springer.
There are 51 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Articles
Authors

Olgun Konur 0000-0002-2677-6048

Ömür Saatçioğlu 0000-0001-9054-2054

Can Çolpan 0000-0003-0855-3147

Publication Date September 6, 2021
Published in Issue Year 2021

Cite

APA Konur, O., Saatçioğlu, Ö., & Çolpan, C. (2021). EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi109-134. https://doi.org/10.18613/deudfd.969098
AMA Konur O, Saatçioğlu Ö, Çolpan C. EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. Published online September 1, 2021:109-134. doi:10.18613/deudfd.969098
Chicago Konur, Olgun, Ömür Saatçioğlu, and Can Çolpan. “EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, September (September 2021), 109-34. https://doi.org/10.18613/deudfd.969098.
EndNote Konur O, Saatçioğlu Ö, Çolpan C (September 1, 2021) EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 109–134.
IEEE O. Konur, Ö. Saatçioğlu, and C. Çolpan, “EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, pp. 109–134, September 2021, doi: 10.18613/deudfd.969098.
ISNAD Konur, Olgun et al. “EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. September 2021. 109-134. https://doi.org/10.18613/deudfd.969098.
JAMA Konur O, Saatçioğlu Ö, Çolpan C. EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2021;:109–134.
MLA Konur, Olgun et al. “EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 2021, pp. 109-34, doi:10.18613/deudfd.969098.
Vancouver Konur O, Saatçioğlu Ö, Çolpan C. EXERGY BASED SUSTAINABILITY ASSESSMENT OF AN ORC INTEGRATED WASTE HEAT RECOVERY SYSTEM FOR MARINE VESSELS. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2021:109-34.

Dergimizde yayınlanmış makaleler kaynak gösterilmeden kullanılamaz

Dergideki yazıların bilimsel sorumluluğu yazarlarına aittir.

Denizcilik Fakültesi Dergisinin içeriği tüm kullanıcılara ücretsiz olarak sunulmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/deudfd/contacts


download    download   download

                                               18441     23882   23881      13875                                                                     27606  13880 13876  27184   download