Review
BibTex RIS Cite

DİZEL ELEKTRİK SEVK SİSTEMİNİN TARİHSEL SÜRECİ

Year 2021, Volume: 13 Issue: 2, 299 - 316, 31.12.2021
https://doi.org/10.18613/deudfd.932650

Abstract

Fosil yakıtların tüketiminden kaynaklanan gaz emisyonlarının çevreye zararlı etkileri artarak devam etmektedir. Bu etkileri azaltabilmek adına denizcilik alanında yeni regülasyonlar uygulanmakta ve bu regülasyonlara uyum sağlamak giderek zorlaşmaktadır. Konvansiyonel sevk sistemlerindeki teknolojik gelişmelerin, özellikle çevresel faktörler göz önünde bulundurulduğunda, belirli bir doygunluğa ulaşması ve yetersiz kalması, araştırmacıları elektrikli sevk sistemleri alanında çalışmaya yöneltmiştir. Elektrikli sevk sistemlerinin tarihsel sürecini ve gelişimini inceleyen birçok çalışma vardır. Bu literatür çalışmasında elektrikli tahrik sistemlerinde önemli bir yere sahip olan Dizel-Elektrik sevk sisteminin tarihçesi açıklanmakta ve bu sistemin özellikle son 20 yılda değişimi ve gelişimi ve diğer elektrikli sevk sistemleriyle karşılaştırılması incelenmiştir. Pek çok gemi tipi için önemli bir sevk sistemi alternatifi olmayı başaran Dizel-Elektrik sevk sisteminin teknolojik gelişmelerle birlikte farklı avantajlara sahip olabileceği gösterilmiştir.

References

  • Ådnanes, A. K. (2003). Maritime electrical installations and diesel electric propulsion.
  • Ammar, N. R., and Seddiek, I. S. (2021). Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: case study passenger vessel. Environmental Science and Pollution Research, 1-16.
  • Benatmane, M., and Maltby, R. E. (2006). The Experience of Advanced Electric Power and Propulsion Systems on Land-The Electric Ship Technology Demonstrator. In Pacific 2006 International Maritime Conference (p. 324). Pacific 2006 International Maritime Conference Managers.
  • Chang, D., Rhee, T., Nam, K., Lee, S., Kwak, B., and Ha, J. (2008). Economic evaluation of propulsion systems for LNG carriers: a comparative life cycle cost approach. GasTech 2008.
  • Dedes, E., Hudson, D., and Turnock, S. (2010). Design of hybrid diesel-electric energy storage systems to maximize overall ship propulsive efficiency. In 11th International Symposium on Practical Design of Ships and Other Floating Structures. Rio de Janeiro: Universidade Federal de Rio de (pp. 703-713).
  • Dedes, E. K., Hudson, D. A., and Turnock, S. R. (2012). Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping. Energy policy, 40, 204-218.
  • Guo, Y., Zheng, H. Y., Wang, B. L., and Shen, A. D. (2005, August). Design of ship electric propulsion simulation system. In 2005 International Conference on Machine Learning and Cybernetics (Vol. 2, pp. 1059-1063). IEEE.
  • Hansen, J. F., and Lysebo, R. (2007, April). Comparison of electric power and propulsion plants for LNG carriers with different propulsion systems. In 15th International Conference & Exhibition on Liquefied Natural Gas, Spain (pp. 24-27).
  • Hansen, J. F., Lindtjørn, J. O., Vanska, K., and Abb, O. (2011, October). Onboard DC Grid for enhanced DP operation in ships. In Dynamic Positioning Conference, Houston.
  • Hubbell. (2019). The Vandal Was The First Diesel-Electric Vessel. Waterways Journal https://www.waterwaysjournal.net/2019/11/19/the-vandal-was-the-first-diesel-electric-vessel/
  • Kumar, B. A., Selvaraj, R., Chelliah, T. R., & Ramesh, U. S. (2019). Improved Fuel-Use Efficiency in Diesel–Electric Tugboats With an Asynchronous Power Generating Unit. IEEE Transactions on Transportation Electrification, 5(2), 565-578.
  • Marsden, P. (1994). Ships of the Port of London: first to eleventh centuries AD.
  • Morales Vásquez, C. A. (2014). A methodology to select the electric propulsion system for Platform Supply Vessels (PSV). Doctoral dissertation, Universidade de São Paulo).
  • Mrzljak, V., and Mrakovčić, T. (2016). Comparison of COGES and diesel-electric ship propulsion systems. Pomorski zbornik, (1), 131-148.
  • Papalambrou, G., Samokhin, S., Topaloglou, S., Planakis, N., Kyrtatos, N., and Zenger, K. (2017). Model predictive control for hybrid diesel-electric marine propulsion. IFAC-PapersOnLine, 50(1), 11064-11069.
  • Satpathi, K., Ukil, A., and Pou, J. (2018). Short-circuit fault management in DC electric ship propulsion system: protection requirements, review of existing technologies and future research trends. IEEE Transactions on Transportation Electrification, 4(1), 272-291.
  • Skjong, E., Volden, R., Rødskar, E., Molinas, M., Johansen, T. A., and Cunningham, J. (2016). Past, present, and future challenges of the marine vessel’s electrical power system. IEEE Transactions on Transportation Electrification, 2(4), 522-537.
  • Solem, S., Fagerholt, K., Erikstad, S. O., and Patricksson, Ø. (2015). Optimization of diesel electric machinery system configuration in conceptual ship design. Journal of Marine Science and Technology, 20(3), 406-416.
  • Soultatis, C. (2004). Systems modeling for electric ship design (Doctoral dissertation, Massachusetts Institute of Technology).
  • Veksler, A., Johansen, T. A., Mathiesen, E., and Skjetne, R. (2013, July). Governor principle for increased safety and economy on vessels with diesel-electric propulsion. In 2013 European Control Conference (ECC) (pp. 2579-2584). IEEE.
  • Xiao, N., Xu, X., and Chen, B. (2020). Research on Simulation and Experiment of Ship Complex Diesel-Electric Hybrid Propulsion System. Journal of Ship Research, 64(2).
  • Wartsila 2020 Electric Propulsion Systems https://www.wartsila.com/marine/build/electrical-and-power-systems/electric-propulsion/electric-propulsion-systems
  • Zuancang, L., Yulong, Z., and Qinming, T. (2009, December). Research on the selection of LNG carrier propulsion systems. In 2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering (pp. 78-81). IEEE.

THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM

Year 2021, Volume: 13 Issue: 2, 299 - 316, 31.12.2021
https://doi.org/10.18613/deudfd.932650

Abstract

The harmful effects of gas emissions, resulting from the consumption of fossil fuels, on the environment continue to increase. In order to reduce these effects, new regulations are implemented in the field of maritime and it is getting harder to comply with these regulations. The fact that the technological developments in conventional propulsion systems come to a head and become insufficient especially when environmental factors are taken into consideration, has led researchers to work in the field of electrical propulsion systems. There are many studies examining the historical process and development of electrical propulsion systems. In this literature study, the history of the Diesel-Electric propulsion system, which has an important place in electrical propulsion systems, is explained and the change and development of this system, especially in the last 20 years, and its comparison with other electrical propulsion systems are discussed. It has been shown that Diesel-Electric propulsion system, which has succeeded to be an important propulsion system alternative for many ship types, can have different advantages with technological developments

References

  • Ådnanes, A. K. (2003). Maritime electrical installations and diesel electric propulsion.
  • Ammar, N. R., and Seddiek, I. S. (2021). Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: case study passenger vessel. Environmental Science and Pollution Research, 1-16.
  • Benatmane, M., and Maltby, R. E. (2006). The Experience of Advanced Electric Power and Propulsion Systems on Land-The Electric Ship Technology Demonstrator. In Pacific 2006 International Maritime Conference (p. 324). Pacific 2006 International Maritime Conference Managers.
  • Chang, D., Rhee, T., Nam, K., Lee, S., Kwak, B., and Ha, J. (2008). Economic evaluation of propulsion systems for LNG carriers: a comparative life cycle cost approach. GasTech 2008.
  • Dedes, E., Hudson, D., and Turnock, S. (2010). Design of hybrid diesel-electric energy storage systems to maximize overall ship propulsive efficiency. In 11th International Symposium on Practical Design of Ships and Other Floating Structures. Rio de Janeiro: Universidade Federal de Rio de (pp. 703-713).
  • Dedes, E. K., Hudson, D. A., and Turnock, S. R. (2012). Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping. Energy policy, 40, 204-218.
  • Guo, Y., Zheng, H. Y., Wang, B. L., and Shen, A. D. (2005, August). Design of ship electric propulsion simulation system. In 2005 International Conference on Machine Learning and Cybernetics (Vol. 2, pp. 1059-1063). IEEE.
  • Hansen, J. F., and Lysebo, R. (2007, April). Comparison of electric power and propulsion plants for LNG carriers with different propulsion systems. In 15th International Conference & Exhibition on Liquefied Natural Gas, Spain (pp. 24-27).
  • Hansen, J. F., Lindtjørn, J. O., Vanska, K., and Abb, O. (2011, October). Onboard DC Grid for enhanced DP operation in ships. In Dynamic Positioning Conference, Houston.
  • Hubbell. (2019). The Vandal Was The First Diesel-Electric Vessel. Waterways Journal https://www.waterwaysjournal.net/2019/11/19/the-vandal-was-the-first-diesel-electric-vessel/
  • Kumar, B. A., Selvaraj, R., Chelliah, T. R., & Ramesh, U. S. (2019). Improved Fuel-Use Efficiency in Diesel–Electric Tugboats With an Asynchronous Power Generating Unit. IEEE Transactions on Transportation Electrification, 5(2), 565-578.
  • Marsden, P. (1994). Ships of the Port of London: first to eleventh centuries AD.
  • Morales Vásquez, C. A. (2014). A methodology to select the electric propulsion system for Platform Supply Vessels (PSV). Doctoral dissertation, Universidade de São Paulo).
  • Mrzljak, V., and Mrakovčić, T. (2016). Comparison of COGES and diesel-electric ship propulsion systems. Pomorski zbornik, (1), 131-148.
  • Papalambrou, G., Samokhin, S., Topaloglou, S., Planakis, N., Kyrtatos, N., and Zenger, K. (2017). Model predictive control for hybrid diesel-electric marine propulsion. IFAC-PapersOnLine, 50(1), 11064-11069.
  • Satpathi, K., Ukil, A., and Pou, J. (2018). Short-circuit fault management in DC electric ship propulsion system: protection requirements, review of existing technologies and future research trends. IEEE Transactions on Transportation Electrification, 4(1), 272-291.
  • Skjong, E., Volden, R., Rødskar, E., Molinas, M., Johansen, T. A., and Cunningham, J. (2016). Past, present, and future challenges of the marine vessel’s electrical power system. IEEE Transactions on Transportation Electrification, 2(4), 522-537.
  • Solem, S., Fagerholt, K., Erikstad, S. O., and Patricksson, Ø. (2015). Optimization of diesel electric machinery system configuration in conceptual ship design. Journal of Marine Science and Technology, 20(3), 406-416.
  • Soultatis, C. (2004). Systems modeling for electric ship design (Doctoral dissertation, Massachusetts Institute of Technology).
  • Veksler, A., Johansen, T. A., Mathiesen, E., and Skjetne, R. (2013, July). Governor principle for increased safety and economy on vessels with diesel-electric propulsion. In 2013 European Control Conference (ECC) (pp. 2579-2584). IEEE.
  • Xiao, N., Xu, X., and Chen, B. (2020). Research on Simulation and Experiment of Ship Complex Diesel-Electric Hybrid Propulsion System. Journal of Ship Research, 64(2).
  • Wartsila 2020 Electric Propulsion Systems https://www.wartsila.com/marine/build/electrical-and-power-systems/electric-propulsion/electric-propulsion-systems
  • Zuancang, L., Yulong, Z., and Qinming, T. (2009, December). Research on the selection of LNG carrier propulsion systems. In 2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering (pp. 78-81). IEEE.
There are 23 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Articles
Authors

Murat Pamık 0000-0003-3268-1368

Mustafa Nuran 0000-0003-2779-7980

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 13 Issue: 2

Cite

APA Pamık, M., & Nuran, M. (2021). THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 13(2), 299-316. https://doi.org/10.18613/deudfd.932650
AMA Pamık M, Nuran M. THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. December 2021;13(2):299-316. doi:10.18613/deudfd.932650
Chicago Pamık, Murat, and Mustafa Nuran. “THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 13, no. 2 (December 2021): 299-316. https://doi.org/10.18613/deudfd.932650.
EndNote Pamık M, Nuran M (December 1, 2021) THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 13 2 299–316.
IEEE M. Pamık and M. Nuran, “THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 13, no. 2, pp. 299–316, 2021, doi: 10.18613/deudfd.932650.
ISNAD Pamık, Murat - Nuran, Mustafa. “THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 13/2 (December 2021), 299-316. https://doi.org/10.18613/deudfd.932650.
JAMA Pamık M, Nuran M. THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2021;13:299–316.
MLA Pamık, Murat and Mustafa Nuran. “THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 13, no. 2, 2021, pp. 299-16, doi:10.18613/deudfd.932650.
Vancouver Pamık M, Nuran M. THE HISTORICAL PROCESS OF THE DIESEL ELECTRIC PROPULSION SYSTEM. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2021;13(2):299-316.

Articles published in this journal can not be used without referring to the journal. The authors are scientifically for their manuscripts.

Maritime Faculty Journal does not have article processing charges (APCs) or submission charges.

Dokuz Eylul University Publishing House Web Page
https://kutuphane.deu.edu.tr/yayinevi/


18320  18321 27187

18441  23882 23881  13875  


                                                                   27606  1388013876 27184 27186