Research Article
BibTex RIS Cite

THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES

Year 2022, Volume: 14 Issue: 1, 99 - 121, 30.06.2022
https://doi.org/10.18613/deudfd.881570

Abstract

Because of the heat flow and temperature, marine diesel engine exhaust gas energy is by far the highest desirable among the waste heat sources of a ship. Waste heat recovery systems generate electrical power by using this exhaust gas energy. The goal of this study is to measure how much the power turbine generator improves the system's efficiency for 3 different engine loads and 3 different ambient conditions. This study presents a power turbine generator using a six-cylinder low-speed marine diesel engine. Analyses are performed by considering three different ambient conditions and three different diesel engine loads, and the exergy destruction of each component, exergy efficiency, exergy destruction rate, efficiency increases, and power output of the system is calculated. Besides that, the payback period is calculated according to the installation cost of the power turbine generator and the cost of the fuel saved annually. Based on the analysis, the highest power output for the power turbine generator occurred under 100% engine operating load and winter ambient conditions, and the lowest power output occurred under 75% engine operating load and tropical ambient conditions. On the other hand, for the same ambient conditions, the highest efficiency increase occurred at 90% engine operating load, and the lowest efficiency increase occurred at 100% engine operating load. In the power turbine generator, it is observed that the shortest payback period is 100% engine operating load and winter ambient condition.

References

  • ABS (2013). Ship Energy Efficiency Measures. https://ww2.eagle.org /content/dam/eagle/advisories-anddebriefs/ABS_Energy_Efficiency_Adv isory.pdf. Access Date: 17.11.2020
  • Abuşoğlu, A. and Kanoğlu, M. (2008). First and Second Law Analysis of Diesel Engine Powered Cogeneration Systems. Energy Conversion and Management, 49, 2026- 2031.
  • Abuşoğlu, A. and Kanoğlu, M. (2009). Exergetic and Thermoeconomic Analyses of Diesel Engine Powered Cogeneration: Part 1 – Formulations. Applied Thermal Engineering, 29, 234-241.
  • Akman, M. (2016). Bir Petrol Tankeri için Organik Rankine Çevrimi Atık Isı Geri Kazanım Sisteminin Termodinamik Analizi, MSc Thesis, Istanbul Technical University, The Graduate School of Natural and Applied Sciences, Istanbul.
  • Baldi, F. and Gabrielii, C. (2015). A Feasibility Analysis of Waste Heat Recovery Systems for Marine Applications. Energy, 80, 654-665. Bellolio, S., Lemort, V., and Rigo, P. (2015). Organic Rankine Cycle Systems for Waste Heat Recovery in Marine Applications, International Conference on Shipping in Changing Climates, Glasgow, UK, 2015, 1–11.
  • Cengel, Y. A., and Boles, M. A. (2006). Thermodynamics: An Engineering Approach. (Mcgraw-Hill) (Eighth Edition). New York.
  • Ersayın, E. and Özgener, L. (2015). Performance Analysis of Combined Cycle Power Plants: A Case Study. Renewable and Sustainable Energy Reviews, 43, 832-842.
  • F-Chart Software (2018). Engineering Equation Solver. http://www.fchart.com/ees/. Access Date: 01.12.2020.
  • Ganjehkaviri, A., Mohd Jaafar, M. N. and Hosseini, S. E. (2015). Optimization and The Effect of Steam Turbine Outlet Quality on The Output Power of a Combined Cycle Power Plant. Energy Conversion and Management, 89, 231-243.
  • Güneş, Ü., Üst, Y., and Karakurt, A.S. (2015). Performance Analysis of Turbocharged 2-Stroke Diesel Engine. International Conference on Engineering and Natural Science (ICENS).
  • Hazar, C. (2019). Gemi Dizel Ana Makinelerinde Atık Isı Geri Kazanım Yöntemlerinin Termodinamik Analizi, MSc thesis, Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir.
  • Hountalal, D. T., Antonopoulos, A. K., Sakellaridis, N. F., Zovanos, G. N., Pariotis, E. G., and Papagiannakis, R. G. (2012). Computational Investigation of The Effect of Ambient Conditions on The Performance of Turbocharged Large Scale Marine Diesel Engines. In The 25th International Conference on Efficiency, Cost, Optimization, Simulatıon And Environmental Impact of Energy Systems. Perugia, Italy.
  • Ibrahim, T. K., Basrawi, F., Awad, O. I, Abdullah, A. N., Najafi, G., Mamat, R. and Hagos, F. Y. (2017). Thermal Performance of Gas Turbine Power Plant Based on Exergy Analysis. Applied Thermal Engineering, 115, 977-985.
  • Kanoğlu, M. and Dinçer, İ. (2009). Performance Assessment of Cogeneration Plants. Energy Conversion and Management, 50, 76-81.
  • Larsen, U., Sigthorsson, O., and Haglind, F. (2014). A Comparison of Advanced Heat Recovery Power Cycles in A Combined Cycle for Large Ships. Energy, 74, 260-268.
  • Ma, J., Liu, L., Zhu, T., and Zhang, T. (2016). Cascade Utilization of Exhaust Gas and Jacket Water Waste Heat from an Internal Combustion Engine by a Single Loop Organic Rankine Cycle System. Applied Thermal Engineering, 107, 218-226.
  • MAN B&W. (2014). Two stroke-Technical papers/brochures. Waste Heat Recovery System (WHRS) for reduction of Fuel Consumption, Emissions and EEDI. http://www.turbomachinery.man.eu/docs/librariesprovider4 /Turbomachinery_doc/waste-heat-recoverysystem-(whrs).Pdf. Access Date: 17.11.2020
  • MAN B&W. (2014a). Influence of Ambient Temperature Conditions Main engine operation of MAN B&W two-stroke engines. http://www.marine.man.eu/docs/librariesprovider6/technical-papers/influ ence-of-ambienttemperature-conditions.pdf. Access Date: 18.11.2020
  • MAN B&W. (2014b). Soot Deposits and Fires in Exhaust gas Boilers. http://marine.man.eu/docs/librariesprovider6/technical-papers/soot-deposi ts-andfires-in exhaust-gas-boilers.pdf. Access Date: 18.11.2020
  • Man Diesel&Turbo (2014). Thermo Efficiency System for Reduction of Fuel Consumption and CO2 Emission. http://marine.man.eu/docs/libraries provider6/technical-papers/thermo-efficiencysystem.pdf. Access Date: 16.11.2020
  • Mito, M. T., Teamah, M. A., El-Maghlany, W. M.,and Shehata, A. I. (2018). Utilizing the Scavenge Air Cooling in Improving the Performance of Marine Diesel Engine Waste Heat Recovery Systems. Energy, 142, 264-276.
  • Nielsen, R. F., Haglind, F., and Larsen, U. (2014). Design and Modeling of an Advanced Marine Machinery System İncluding Waste Heat Recovery and Removal of Sulphur Oxides. Energy Conversion and Management, 85, 687-693.
  • Ntziachristos, L., Saukko, E., Lehtoranta, K., Rönkkö, T., Timonen, H., Simonen, P., Karjalainen, P. and Keskinen, J. (2016). Particle Emissions Characterization from A Medium-Speed Marine Diesel Engine with Two Fuels at Different Sampling Conditions. Fuel, 186, 456-465.
  • Ohijeagbon, I. O., Waheed, M. A. and Jekayinfa, S. O. (2013). Methodology for The Physical and Chemical Exergetic Analysis of Steam Boilers. Energy, 53, 153-164.
  • Saeed, K. (2014). Review on Advances in Marine Diesel Engines and Its Impact on Ship Designs. Journal of Ocean, Mechanical and Aerospace Science and Engineering, 13 (1).
  • Ship and Bunker (2020). World Bunker Prices. Average Bunker Prices. https://shipand bunker.com/prices/av. Access Date: 01.12.2020
  • U.S. Department of Energy. (2008). Waste Heat Recovery: Technology and Opportunities in U.S. Industry. https://www1.eere.energy.gov/ manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf. Access Date: 17.11.2020
  • Wang, T., Zhang, Y., Zhang, J., Shu, G., and Peng, Z. (2013). Analysis of Recoverable Exhaust Energy from A Light-Duty Gasoline Engine. Applied Thermal Engineering, 53, 414-419.
  • Wartsila. (2004). Less Emissions Through Waste Heat Recovery. http://marineengineering.co.za/technical-information/motor-docs/waste-heatrecovery.pdf. Access Date: 16.11.2020
  • WIN GD (2017). Low-speed Engines 2017. http://www.hsdengine.com/ download/pdf/product/marine/Doosan-WinGD.pdf. Access Date: 01.12.2020

DENİZ DİZEL MAKİNELERİ İÇİN GÜÇ TÜRBİNİ JENERATÖRÜNÜN TERMODİNAMİK ANALİZİ VE GERİ ÖDEME SÜRESİ ARAŞTIRMASI

Year 2022, Volume: 14 Issue: 1, 99 - 121, 30.06.2022
https://doi.org/10.18613/deudfd.881570

Abstract

Isı akışı ve sıcaklık nedeniyle, deniz dizel motoru egzoz gazı enerjisi, bir geminin atık ısı kaynakları arasında açık ara en çok arzu edilen enerjidir. Atık ısı geri kazanım sistemleri, bu egzoz gazı enerjisini kullanarak elektrik enerjisi üretir. Bu çalışmanın amacı, güç türbini jeneratörünün 3 farklı motor yükü ve 3 farklı ortam koşulu için sistemin verimliliğini ne kadar artırdığını ölçmektir. Bu çalışma, altı silindirli düşük hızlı deniz dizel motoru kullanan bir güç türbini jeneratörünü göstermektedir. Analizler, üç farklı ortam koşulları ve üç farklı dizel motor yükü dikkate alınarak yapılır ve her bir bileşenin ekserji yıkımı, ekserji verimi, ekserji yıkım oranı, verimlilik artışları ve sistemin güç çıkışı hesaplanır. Bunun yanı sıra geri ödeme süresi, güç türbini jeneratörünün kurulum maliyeti ve yıllık tasarruf edilen yakıt maliyetine göre hesaplanmaktadır. Analize göre, güç türbini jeneratörü için en yüksek güç çıkışı % 100 motor çalışma yükü ve kış ortam koşullarında, en düşük güç çıkışı ise % 75 motor çalışma yükü ve tropikal ortam koşullarında gerçekleşmiştir. Öte yandan aynı ortam koşullarında en yüksek verimlilik artışı % 90 motor çalışma yükünde, en düşük verimlilik artışı ise % 100 motor çalışma yükünde gerçekleşmiştir. Güç türbini jeneratöründe en kısa geri ödeme süresinin % 100 motor çalışma yükü ve kış ortam koşulu olduğu görülmüştür.

References

  • ABS (2013). Ship Energy Efficiency Measures. https://ww2.eagle.org /content/dam/eagle/advisories-anddebriefs/ABS_Energy_Efficiency_Adv isory.pdf. Access Date: 17.11.2020
  • Abuşoğlu, A. and Kanoğlu, M. (2008). First and Second Law Analysis of Diesel Engine Powered Cogeneration Systems. Energy Conversion and Management, 49, 2026- 2031.
  • Abuşoğlu, A. and Kanoğlu, M. (2009). Exergetic and Thermoeconomic Analyses of Diesel Engine Powered Cogeneration: Part 1 – Formulations. Applied Thermal Engineering, 29, 234-241.
  • Akman, M. (2016). Bir Petrol Tankeri için Organik Rankine Çevrimi Atık Isı Geri Kazanım Sisteminin Termodinamik Analizi, MSc Thesis, Istanbul Technical University, The Graduate School of Natural and Applied Sciences, Istanbul.
  • Baldi, F. and Gabrielii, C. (2015). A Feasibility Analysis of Waste Heat Recovery Systems for Marine Applications. Energy, 80, 654-665. Bellolio, S., Lemort, V., and Rigo, P. (2015). Organic Rankine Cycle Systems for Waste Heat Recovery in Marine Applications, International Conference on Shipping in Changing Climates, Glasgow, UK, 2015, 1–11.
  • Cengel, Y. A., and Boles, M. A. (2006). Thermodynamics: An Engineering Approach. (Mcgraw-Hill) (Eighth Edition). New York.
  • Ersayın, E. and Özgener, L. (2015). Performance Analysis of Combined Cycle Power Plants: A Case Study. Renewable and Sustainable Energy Reviews, 43, 832-842.
  • F-Chart Software (2018). Engineering Equation Solver. http://www.fchart.com/ees/. Access Date: 01.12.2020.
  • Ganjehkaviri, A., Mohd Jaafar, M. N. and Hosseini, S. E. (2015). Optimization and The Effect of Steam Turbine Outlet Quality on The Output Power of a Combined Cycle Power Plant. Energy Conversion and Management, 89, 231-243.
  • Güneş, Ü., Üst, Y., and Karakurt, A.S. (2015). Performance Analysis of Turbocharged 2-Stroke Diesel Engine. International Conference on Engineering and Natural Science (ICENS).
  • Hazar, C. (2019). Gemi Dizel Ana Makinelerinde Atık Isı Geri Kazanım Yöntemlerinin Termodinamik Analizi, MSc thesis, Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir.
  • Hountalal, D. T., Antonopoulos, A. K., Sakellaridis, N. F., Zovanos, G. N., Pariotis, E. G., and Papagiannakis, R. G. (2012). Computational Investigation of The Effect of Ambient Conditions on The Performance of Turbocharged Large Scale Marine Diesel Engines. In The 25th International Conference on Efficiency, Cost, Optimization, Simulatıon And Environmental Impact of Energy Systems. Perugia, Italy.
  • Ibrahim, T. K., Basrawi, F., Awad, O. I, Abdullah, A. N., Najafi, G., Mamat, R. and Hagos, F. Y. (2017). Thermal Performance of Gas Turbine Power Plant Based on Exergy Analysis. Applied Thermal Engineering, 115, 977-985.
  • Kanoğlu, M. and Dinçer, İ. (2009). Performance Assessment of Cogeneration Plants. Energy Conversion and Management, 50, 76-81.
  • Larsen, U., Sigthorsson, O., and Haglind, F. (2014). A Comparison of Advanced Heat Recovery Power Cycles in A Combined Cycle for Large Ships. Energy, 74, 260-268.
  • Ma, J., Liu, L., Zhu, T., and Zhang, T. (2016). Cascade Utilization of Exhaust Gas and Jacket Water Waste Heat from an Internal Combustion Engine by a Single Loop Organic Rankine Cycle System. Applied Thermal Engineering, 107, 218-226.
  • MAN B&W. (2014). Two stroke-Technical papers/brochures. Waste Heat Recovery System (WHRS) for reduction of Fuel Consumption, Emissions and EEDI. http://www.turbomachinery.man.eu/docs/librariesprovider4 /Turbomachinery_doc/waste-heat-recoverysystem-(whrs).Pdf. Access Date: 17.11.2020
  • MAN B&W. (2014a). Influence of Ambient Temperature Conditions Main engine operation of MAN B&W two-stroke engines. http://www.marine.man.eu/docs/librariesprovider6/technical-papers/influ ence-of-ambienttemperature-conditions.pdf. Access Date: 18.11.2020
  • MAN B&W. (2014b). Soot Deposits and Fires in Exhaust gas Boilers. http://marine.man.eu/docs/librariesprovider6/technical-papers/soot-deposi ts-andfires-in exhaust-gas-boilers.pdf. Access Date: 18.11.2020
  • Man Diesel&Turbo (2014). Thermo Efficiency System for Reduction of Fuel Consumption and CO2 Emission. http://marine.man.eu/docs/libraries provider6/technical-papers/thermo-efficiencysystem.pdf. Access Date: 16.11.2020
  • Mito, M. T., Teamah, M. A., El-Maghlany, W. M.,and Shehata, A. I. (2018). Utilizing the Scavenge Air Cooling in Improving the Performance of Marine Diesel Engine Waste Heat Recovery Systems. Energy, 142, 264-276.
  • Nielsen, R. F., Haglind, F., and Larsen, U. (2014). Design and Modeling of an Advanced Marine Machinery System İncluding Waste Heat Recovery and Removal of Sulphur Oxides. Energy Conversion and Management, 85, 687-693.
  • Ntziachristos, L., Saukko, E., Lehtoranta, K., Rönkkö, T., Timonen, H., Simonen, P., Karjalainen, P. and Keskinen, J. (2016). Particle Emissions Characterization from A Medium-Speed Marine Diesel Engine with Two Fuels at Different Sampling Conditions. Fuel, 186, 456-465.
  • Ohijeagbon, I. O., Waheed, M. A. and Jekayinfa, S. O. (2013). Methodology for The Physical and Chemical Exergetic Analysis of Steam Boilers. Energy, 53, 153-164.
  • Saeed, K. (2014). Review on Advances in Marine Diesel Engines and Its Impact on Ship Designs. Journal of Ocean, Mechanical and Aerospace Science and Engineering, 13 (1).
  • Ship and Bunker (2020). World Bunker Prices. Average Bunker Prices. https://shipand bunker.com/prices/av. Access Date: 01.12.2020
  • U.S. Department of Energy. (2008). Waste Heat Recovery: Technology and Opportunities in U.S. Industry. https://www1.eere.energy.gov/ manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf. Access Date: 17.11.2020
  • Wang, T., Zhang, Y., Zhang, J., Shu, G., and Peng, Z. (2013). Analysis of Recoverable Exhaust Energy from A Light-Duty Gasoline Engine. Applied Thermal Engineering, 53, 414-419.
  • Wartsila. (2004). Less Emissions Through Waste Heat Recovery. http://marineengineering.co.za/technical-information/motor-docs/waste-heatrecovery.pdf. Access Date: 16.11.2020
  • WIN GD (2017). Low-speed Engines 2017. http://www.hsdengine.com/ download/pdf/product/marine/Doosan-WinGD.pdf. Access Date: 01.12.2020
There are 30 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Articles
Authors

Canberk Hazar 0000-0001-6138-4181

Güner Özmen

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 14 Issue: 1

Cite

APA Hazar, C., & Özmen, G. (2022). THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 14(1), 99-121. https://doi.org/10.18613/deudfd.881570
AMA Hazar C, Özmen G. THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. June 2022;14(1):99-121. doi:10.18613/deudfd.881570
Chicago Hazar, Canberk, and Güner Özmen. “THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 14, no. 1 (June 2022): 99-121. https://doi.org/10.18613/deudfd.881570.
EndNote Hazar C, Özmen G (June 1, 2022) THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 14 1 99–121.
IEEE C. Hazar and G. Özmen, “THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 14, no. 1, pp. 99–121, 2022, doi: 10.18613/deudfd.881570.
ISNAD Hazar, Canberk - Özmen, Güner. “THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 14/1 (June 2022), 99-121. https://doi.org/10.18613/deudfd.881570.
JAMA Hazar C, Özmen G. THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2022;14:99–121.
MLA Hazar, Canberk and Güner Özmen. “THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol. 14, no. 1, 2022, pp. 99-121, doi:10.18613/deudfd.881570.
Vancouver Hazar C, Özmen G. THERMODYNAMIC ANALYSIS AND PAYBACK PERIOD INVESTIGATION OF POWER TURBINE GENERATOR FOR MARINE DIESEL ENGINES. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2022;14(1):99-121.

Articles published in this journal can not be used without referring to the journal. The authors are scientifically for their manuscripts.

Maritime Faculty Journal does not have article processing charges (APCs) or submission charges.

Dokuz Eylul University Publishing House Web Page
https://kutuphane.deu.edu.tr/yayinevi/


18320  18321 27187

18441  23882 23881  13875  


                                      27606  1388013876 27184 27186