Case Report
BibTex RIS Cite

STEM CELLS

Year 2019, , 271 - 280, 06.02.2020
https://doi.org/10.5505/deutfd.2019.35693

Abstract

A stem cell is an undifferentiated cell that can self-renew itself and can commit to a specific cell type. Depending on their residency, stem cells are classified into two main categories as embryonic stem cells and adult stem cells. According to their differentiation and developmental potential, stem cells may be classified as totipotent, pluripotent, multipotent, and unipotent. The therapeutic potential in disease states and in regenerative medicine of embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, and cancer stem cells have been studied in different scientific areas. In this review, the definition, common characteristics, and clinical use of different stem cells will be discussed.

References

  • 1. Schöler HR. The Potential of Stem Cells: An Inventory. In: Knoepffler N, Schipanski D, Sorgner SL ed. Humanbiotechnology as Social Challenge. London: Ashgate Publishing, 2007.
  • 2. Can A. Kök Hücre. In: Can A, ed. Kök Hücre Biyolojisi, Türleri ve Klinik Kullanımları. Ankara: Akademisyen Tıp Kitabevi, 2014.
  • 3. Can A. Kök hücrelerin genel özellikleri, embriyonik veee yetişkin kök hücrelere genel bakış. Hematolog 2014;4:238-254.
  • 4. Avcılar H, Saraymen B, Özturan OÖ, Köker MY. Embriyonik kök hücreler ve indüklenmiş pluripotent kök hücreler. Asthma Allergy Immunol 2018;16:1-10.
  • 5. Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol 2015;62:329-337.
  • 6. Shinin V, Gayraud-Morel B, Gomès D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 2006;8:677-687.
  • 7. Kiraz Y, Ünlü M, Yandım MK, Baran Y. Kök hücrelerin moleküler biyolojisi. Hematolog 2014;4:255-265.
  • 8. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived bysomatic cell nuclear transfer. Cell 2013;153:1228-1238.
  • 9. Daughtry B, Mitalipov S. Concise review: Parthenote stem cells for regenerative medicine: Genetic, epigenetic, and developmental features. Stem Cells Transl Med 2014;3:290-8.
  • 10. Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res 2008;100:133-158.
  • 11. Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 2008;17:48-53.
  • 12. Kozan S, Öztuna A. İndüklenmiş pluripotent kök hücrelerin genel özellikleri ve temel kavramlar. Hematolog 2014;4:351-364.
  • 13. Ebben D, Zorniak M, Clark PA, Kuo JS. Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine. World Neurosurg 2011;76:270-275.
  • 14. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676.
  • 15. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872.
  • 16. Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958;182:64-65.
  • 17. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997;385:810-813.
  • 18. Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y, Haraguchi N, et al. Emerging methods for preparing iPS cells. Jpn J Clin Oncol 2012;42:773-779.
  • 19. Yamanaka S. A fresh look at iPS cells. Cell 2009;137:13-7.
  • 20. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013;19:998-1004.
  • 21. Pei D. Regulation of pluripotency and reprogramming by transcription factors. J Biol Chem 2009;284:3365-3369.
  • 22. Kim C. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 2014;49:7-14.
  • 23. Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. EMBO J 2014;33:409-417.
  • 24. Greene WA, Kaini RR, Wang HC. Utility of induced pluripotent stem cell-derived retinal pigment epithelium for an in vitro model of proliferative vitreoretinopathy. Adv Exp Med Biol 2019;1186:33-53.
  • 25. Dalvi S, Galloway CA, Singh R. Pluripotent stem cells to model degenerative retinal diseases: the RPE perspective. Adv Exp Med Biol 2019;1186:1-31.
  • 26. Chen KH, Lin KC, Wallace CG, Li YC, Shao PL, Chiang JY, et al. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am J Transl Res 2019;11:6232-6248.
  • 27. Taga A, Dastgheyb R, Habela C, Joseph J, Richard JP, Gross SK, et al. Role of human-induced pluripotent stem cell-derived spinal cord astrocytes in the functional maturation of motor neurons in a multielectrode array system. Stem Cells Transl Med 2019; doi:10.1002/sctm.19-0147 [Epub ahead of print].
  • 28. Mao SH, Chen CH, Chen CT. Osteogenic potential of induced pluripotent stem cells from human adipose-derived stem cells. Stem Cell Res Ther 2019;10:303.
  • 29. Ke M, Chong CM, Su H. Using induced pluripotent stem cells for modeling Parkinson's disease. World J Stem Cells 2019;11:634-649.
  • 30. Atkinson-Dell R, Mohamet L. Induced Pluripotent Stem Cell-Derived Astroglia: a new tool for research towards the treatment of Alzheimer's disease. Adv Exp Med Biol 2019;1175:383-405.
  • 31. Gintant G, Burridge P, Gepstein L, Harding S, Herron T, Hong C, et al. Use of human induced pluripotent stem cell-derived cardiomyocytes in preclinical cancer drug cardiotoxicity testing: a scientific statement from the American Heart Association. Circ Res 2019;125:e75-e92.
  • 32. Hansen M, von Lindern M, van den Akker E, Varga E. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions. FEBS Lett 2019; doi: 10.1002/1873-3468.13599 [Epub ahead of print].
  • 33. Dazzi F, Horwood NJ. Potential of mesenchymal stem cell therapy. Curr Opin Oncol 2007;19:650-1655.
  • 34. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev 2006;20:161-171.
  • 35. Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2008;218:237-245.
  • 36. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995;16:557-564.
  • 37. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000;28:875-884.
  • 38. Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med. 2019;8:871-873.
  • 39. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739-2749.
  • 40. Karlsson H, Erkers T, Nava S, Ruhm S, Westgren M, Ringden O. Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin Exp Immunol 2012;167:543-555.
  • 41. Pansky A, Roitzheim B, Tobiasch E. Differentiation potential of adult human mesenchymal stem cells. Clin Lab 2007;53:81-84.
  • 42. van den Brink L, Grandela C, Mummery CL, Davis RP. Inherited cardiac diseases, pluripotent stem cells and genome editing combined - the past, present and future. Stem Cells 2019; doi: 10.1002/stem.3110 [Epub ahead of print].
  • 43. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439-1441.
  • 44. Miura Y, Yoshioka S, Yao H, Takaori-Kondo A, Maekawa T, Ichinohe T. Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation: is it clinically relevant? Chimerism 2013;4:78-83.
  • 45. Ball LM, Bernardo ME, Roelofs H, van Tol MJ, Contoli B, Zwaginga JJ, et al. Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III-IV acute graft-versus-host disease. Br J Haematol 2013;163:501-509.
  • 46. Sykova E, Forostyak S. Stem Cells in Regenerative Medicine. Laser Ther 2013;22:87-92.
  • 47. Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, Berger F. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006;24:2868-2876.
  • 48. Volkman R, Offen D. Concise Review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 2017;35:1867-1880.
  • 49. Ezquer F, Ezquer M, Arango-Rodriguez M, Conget P. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol 2014;92:e86-e95.
  • 50. Wu H, Mahato RI. Mesenchymal stem cell-based therapy for type 1 diabetes. Discov Med 2014;17:139-143.
  • 51. Shah TG, Predescu D, Predescu S. Mesenchymal stem cells-derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clin Transl Med. 2019;8:25-35.
  • 52. Cruz FF, Rocco PRM. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Rev Respir Med 2019;15:1-9.
  • 53. Arat M. Hematopoetik kök hücrelerin klinik kullanımı. Hematolog 2014;4:298-311.
  • 54. Uçkan Çetinkaya D, Kılıç E. Hematopoetik kök hücre ve mikroçevre ilişkisi. Hematolog 2014;4:284-297.
  • 55. Huang X, Cho S, Spangrude GJ. Hematopoietic stem cells: generation and self renewal. Cell Death Differ 2007;14:1851-1859.
  • 56. Suda T, Takubo K, Semenza, GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011;9:298-310.
  • 57. Akar AR, Durdu S, Arat M, Kilickap M, Kucuk NO, Arslan O, et al. Five-year follow-up after transepicardial implantation of autologous bone marrow mononuclear cells to ungraftable coronary territories for patients with ischaemic cardiomyopathy. Eur J Cardiothorac Surg 2009;36:633-643.
  • 58. Özdemir M, Attar A, Kuzu I, Ayten M, Ozgencil E, Bozkurt M, et al. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev 2012;8:953-962.
  • 59. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. PNAS 2003;100:1364-1369.
  • 60. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168-1170.
  • 61. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine 2000;6:1229-1234.
  • 62. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-compenent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003;111:843-850.
  • 63. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol 2012;44:2144-2451.
  • 64. Sönmez M, Özbaş HM, Yüzbaşıoğlu Ş. Hedefe yönelik tedavide kanser kök hücreleri. Hematolog 2014;4:345-350.
  • 65. Tu LC, Foltz G, Lin E, Hood L, Tian Q. Targeting stem cells-clinical implications for cancer therapy. Curr Stem Cell Res Ther 2009;4:147-53.
  • 66. Hatina J. The dynamics of cancer stem cells. Neoplasma 2012;59:700-707.
  • 67. Chao MP, Alizadeh AA, Tang C, Jan M, Weisman-Tsukamoto R, Zhao F, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 2011;71:1374-84.
  • 68. Akbulut H, Babahan C, Abgarmi SA, Ocal M, Besler M. Recent advances in cancer stem cell targeted therapy. Crit Rev Oncog 2019;24:1-20.
  • 69. Scadden DT. The stem-cell niche as an entity of action. Nature 2006;441:1075-1079.
  • 70. Toh TB, Lim JJ, Chow EK. Epigenetics in cancer stem cells. Mol Cancer 2017;16:29-36.
  • 71. Mak AB, Schnegg C, Lai CY, Ghosh S, Yang MH, Moffat J, et al. CD133-Targeted Niche-Dependent Therapy in Cancer: A Multipronged Approach. Am J Pathol 2014;184:1256-1262.
  • 72. Su J, Zhang L, Zhang W, Choi DS, Wen J, Jiang B, et al. . Targeting the biophysical properties of the myeloma initiating cell niches: a pharmaceutical synergism analysis using multi-scale agent-based modeling. PLoS One 2014;e85059.
  • 73. Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch 2008;452:1-10.
  • 74. Liu S, Clouthier SG, Wicha MS. Role of microRNAs in the regulation of breast cancers stem cells. J Mammary Gland Biol Neoplasia 2012;17:15-21.

Kök Hücreler

Year 2019, , 271 - 280, 06.02.2020
https://doi.org/10.5505/deutfd.2019.35693

Abstract

Kök hücreler kendini yenileyebilen ve spesifik hücre tiplerine dönüşebilen farklılaşmamış hücrelerdir. Kök hücreler vücutta bulundukları yere göre başlıca embriyonik kök hücreler ve erişkin kök hücreler olarak iki ana sınıfa ayrılır. Farklılaşma ve gelişme potansiyellerine göre ise kök hücreler totipotent, pluripotent, multipotent, oligopotent veya unipotent olabilirler. Çeşitli hastalıklarda tedavi amacıyla kullanılabilme ve rejeneratif tıptaki potansiyelleri nedeniyle embriyonik kök hücreler, indüklenmiş pluripotent kök hücreler, mezenkimal kök hücreler, hematopoietik kök hücreler ve kanser kök hücreleri ile farklı bilim alanlarında yapılmış çalışmalar vardır. Bu yazıda kök hücre tanımı, genel özellikleri ve klinikteki kullanımları üzerinde durulacaktır.

References

  • 1. Schöler HR. The Potential of Stem Cells: An Inventory. In: Knoepffler N, Schipanski D, Sorgner SL ed. Humanbiotechnology as Social Challenge. London: Ashgate Publishing, 2007.
  • 2. Can A. Kök Hücre. In: Can A, ed. Kök Hücre Biyolojisi, Türleri ve Klinik Kullanımları. Ankara: Akademisyen Tıp Kitabevi, 2014.
  • 3. Can A. Kök hücrelerin genel özellikleri, embriyonik veee yetişkin kök hücrelere genel bakış. Hematolog 2014;4:238-254.
  • 4. Avcılar H, Saraymen B, Özturan OÖ, Köker MY. Embriyonik kök hücreler ve indüklenmiş pluripotent kök hücreler. Asthma Allergy Immunol 2018;16:1-10.
  • 5. Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol 2015;62:329-337.
  • 6. Shinin V, Gayraud-Morel B, Gomès D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 2006;8:677-687.
  • 7. Kiraz Y, Ünlü M, Yandım MK, Baran Y. Kök hücrelerin moleküler biyolojisi. Hematolog 2014;4:255-265.
  • 8. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived bysomatic cell nuclear transfer. Cell 2013;153:1228-1238.
  • 9. Daughtry B, Mitalipov S. Concise review: Parthenote stem cells for regenerative medicine: Genetic, epigenetic, and developmental features. Stem Cells Transl Med 2014;3:290-8.
  • 10. Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res 2008;100:133-158.
  • 11. Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 2008;17:48-53.
  • 12. Kozan S, Öztuna A. İndüklenmiş pluripotent kök hücrelerin genel özellikleri ve temel kavramlar. Hematolog 2014;4:351-364.
  • 13. Ebben D, Zorniak M, Clark PA, Kuo JS. Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine. World Neurosurg 2011;76:270-275.
  • 14. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676.
  • 15. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872.
  • 16. Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958;182:64-65.
  • 17. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997;385:810-813.
  • 18. Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y, Haraguchi N, et al. Emerging methods for preparing iPS cells. Jpn J Clin Oncol 2012;42:773-779.
  • 19. Yamanaka S. A fresh look at iPS cells. Cell 2009;137:13-7.
  • 20. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013;19:998-1004.
  • 21. Pei D. Regulation of pluripotency and reprogramming by transcription factors. J Biol Chem 2009;284:3365-3369.
  • 22. Kim C. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. Blood Res 2014;49:7-14.
  • 23. Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. EMBO J 2014;33:409-417.
  • 24. Greene WA, Kaini RR, Wang HC. Utility of induced pluripotent stem cell-derived retinal pigment epithelium for an in vitro model of proliferative vitreoretinopathy. Adv Exp Med Biol 2019;1186:33-53.
  • 25. Dalvi S, Galloway CA, Singh R. Pluripotent stem cells to model degenerative retinal diseases: the RPE perspective. Adv Exp Med Biol 2019;1186:1-31.
  • 26. Chen KH, Lin KC, Wallace CG, Li YC, Shao PL, Chiang JY, et al. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am J Transl Res 2019;11:6232-6248.
  • 27. Taga A, Dastgheyb R, Habela C, Joseph J, Richard JP, Gross SK, et al. Role of human-induced pluripotent stem cell-derived spinal cord astrocytes in the functional maturation of motor neurons in a multielectrode array system. Stem Cells Transl Med 2019; doi:10.1002/sctm.19-0147 [Epub ahead of print].
  • 28. Mao SH, Chen CH, Chen CT. Osteogenic potential of induced pluripotent stem cells from human adipose-derived stem cells. Stem Cell Res Ther 2019;10:303.
  • 29. Ke M, Chong CM, Su H. Using induced pluripotent stem cells for modeling Parkinson's disease. World J Stem Cells 2019;11:634-649.
  • 30. Atkinson-Dell R, Mohamet L. Induced Pluripotent Stem Cell-Derived Astroglia: a new tool for research towards the treatment of Alzheimer's disease. Adv Exp Med Biol 2019;1175:383-405.
  • 31. Gintant G, Burridge P, Gepstein L, Harding S, Herron T, Hong C, et al. Use of human induced pluripotent stem cell-derived cardiomyocytes in preclinical cancer drug cardiotoxicity testing: a scientific statement from the American Heart Association. Circ Res 2019;125:e75-e92.
  • 32. Hansen M, von Lindern M, van den Akker E, Varga E. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions. FEBS Lett 2019; doi: 10.1002/1873-3468.13599 [Epub ahead of print].
  • 33. Dazzi F, Horwood NJ. Potential of mesenchymal stem cell therapy. Curr Opin Oncol 2007;19:650-1655.
  • 34. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev 2006;20:161-171.
  • 35. Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2008;218:237-245.
  • 36. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 1995;16:557-564.
  • 37. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000;28:875-884.
  • 38. Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med. 2019;8:871-873.
  • 39. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739-2749.
  • 40. Karlsson H, Erkers T, Nava S, Ruhm S, Westgren M, Ringden O. Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin Exp Immunol 2012;167:543-555.
  • 41. Pansky A, Roitzheim B, Tobiasch E. Differentiation potential of adult human mesenchymal stem cells. Clin Lab 2007;53:81-84.
  • 42. van den Brink L, Grandela C, Mummery CL, Davis RP. Inherited cardiac diseases, pluripotent stem cells and genome editing combined - the past, present and future. Stem Cells 2019; doi: 10.1002/stem.3110 [Epub ahead of print].
  • 43. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439-1441.
  • 44. Miura Y, Yoshioka S, Yao H, Takaori-Kondo A, Maekawa T, Ichinohe T. Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation: is it clinically relevant? Chimerism 2013;4:78-83.
  • 45. Ball LM, Bernardo ME, Roelofs H, van Tol MJ, Contoli B, Zwaginga JJ, et al. Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III-IV acute graft-versus-host disease. Br J Haematol 2013;163:501-509.
  • 46. Sykova E, Forostyak S. Stem Cells in Regenerative Medicine. Laser Ther 2013;22:87-92.
  • 47. Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, Berger F. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006;24:2868-2876.
  • 48. Volkman R, Offen D. Concise Review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 2017;35:1867-1880.
  • 49. Ezquer F, Ezquer M, Arango-Rodriguez M, Conget P. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol 2014;92:e86-e95.
  • 50. Wu H, Mahato RI. Mesenchymal stem cell-based therapy for type 1 diabetes. Discov Med 2014;17:139-143.
  • 51. Shah TG, Predescu D, Predescu S. Mesenchymal stem cells-derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clin Transl Med. 2019;8:25-35.
  • 52. Cruz FF, Rocco PRM. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Rev Respir Med 2019;15:1-9.
  • 53. Arat M. Hematopoetik kök hücrelerin klinik kullanımı. Hematolog 2014;4:298-311.
  • 54. Uçkan Çetinkaya D, Kılıç E. Hematopoetik kök hücre ve mikroçevre ilişkisi. Hematolog 2014;4:284-297.
  • 55. Huang X, Cho S, Spangrude GJ. Hematopoietic stem cells: generation and self renewal. Cell Death Differ 2007;14:1851-1859.
  • 56. Suda T, Takubo K, Semenza, GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011;9:298-310.
  • 57. Akar AR, Durdu S, Arat M, Kilickap M, Kucuk NO, Arslan O, et al. Five-year follow-up after transepicardial implantation of autologous bone marrow mononuclear cells to ungraftable coronary territories for patients with ischaemic cardiomyopathy. Eur J Cardiothorac Surg 2009;36:633-643.
  • 58. Özdemir M, Attar A, Kuzu I, Ayten M, Ozgencil E, Bozkurt M, et al. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev 2012;8:953-962.
  • 59. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. PNAS 2003;100:1364-1369.
  • 60. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK. Bone marrow as a potential source of hepatic oval cells. Science 1999;284:1168-1170.
  • 61. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine 2000;6:1229-1234.
  • 62. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-compenent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003;111:843-850.
  • 63. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol 2012;44:2144-2451.
  • 64. Sönmez M, Özbaş HM, Yüzbaşıoğlu Ş. Hedefe yönelik tedavide kanser kök hücreleri. Hematolog 2014;4:345-350.
  • 65. Tu LC, Foltz G, Lin E, Hood L, Tian Q. Targeting stem cells-clinical implications for cancer therapy. Curr Stem Cell Res Ther 2009;4:147-53.
  • 66. Hatina J. The dynamics of cancer stem cells. Neoplasma 2012;59:700-707.
  • 67. Chao MP, Alizadeh AA, Tang C, Jan M, Weisman-Tsukamoto R, Zhao F, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 2011;71:1374-84.
  • 68. Akbulut H, Babahan C, Abgarmi SA, Ocal M, Besler M. Recent advances in cancer stem cell targeted therapy. Crit Rev Oncog 2019;24:1-20.
  • 69. Scadden DT. The stem-cell niche as an entity of action. Nature 2006;441:1075-1079.
  • 70. Toh TB, Lim JJ, Chow EK. Epigenetics in cancer stem cells. Mol Cancer 2017;16:29-36.
  • 71. Mak AB, Schnegg C, Lai CY, Ghosh S, Yang MH, Moffat J, et al. CD133-Targeted Niche-Dependent Therapy in Cancer: A Multipronged Approach. Am J Pathol 2014;184:1256-1262.
  • 72. Su J, Zhang L, Zhang W, Choi DS, Wen J, Jiang B, et al. . Targeting the biophysical properties of the myeloma initiating cell niches: a pharmaceutical synergism analysis using multi-scale agent-based modeling. PLoS One 2014;e85059.
  • 73. Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch 2008;452:1-10.
  • 74. Liu S, Clouthier SG, Wicha MS. Role of microRNAs in the regulation of breast cancers stem cells. J Mammary Gland Biol Neoplasia 2012;17:15-21.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Reviews
Authors

Hale Ören This is me 0000-0001-5760-8007

Publication Date February 6, 2020
Submission Date November 7, 2019
Published in Issue Year 2019

Cite

Vancouver Ören H. Kök Hücreler. DEU Tıp Derg. 2020;33(3):271-80.