Review
BibTex RIS Cite

BLASTOCYST DEVELOPMENT; DIFFERENCE MECHANİSMS OF CELL LAYERS

Year 2018, Volume: 32 Issue: 3, 243 - 250, 15.12.2018

Abstract

Zygotes formed after
fertilization undergo successive mitotic divisions, the first three mitosis
divisions are symmetric and morphologically identical 8 blastomeres are formed.
 Important morphological changes occur in
the embryo in 8-cell stage. These are compaction, polarization, and asymmetric
cell division. Following these changes, the primary lineage differentiation in
the cells of the embryo in the 8-32 cell morulae, consist of namely inner cell
mass (ICM) and outer cell mass (Trofoektoderm; TE). Shortly after the ICM,
epiblast (EPI) and primitive endoderm (PE) cell lines differentiate in the
process called secondary progeny differentiation. In this review, the stages of
blastocyst development in the preimplantation period will be elaborated
sequentially and via molecular pathways.

References

  • Moore KL, Persaud TVN. The Developing Human: Clinically Oriented Embryology. 8th Edition. Saunders Elsevier, 2008. Cell Polarity-Dependent Regulation of Cell Allocation and the First Lineage Specification in the Preimplantation Mouse Embryo. Curr Top Dev Biol, 2018;128: 11-35.
  • Tabansky I, Lenarcic A, Draft RW et al. Developmental bias in Cleavage-Stage Mouse Blastomeres. Curr Biol. 2013; 23: 21–31. doi: 10.1016/j.cub.2012.10.054.
  • White MD, Bissiere S, Alvarez YD, Plachta N,Mouse Embryo Compaction. Curr Top Dev Biol. 2016;120:235-58. doi: 10.1016/bs.ctdb.2016.04.005.
  • Le Cruguel S, Ferré-L’Hôtellier V. Early Compaction at day 3 May Be a Useful Additional Criterion for Embryo Transfer, J Assist Reprod Genet. 2013; 30: 683–690. doi: 10.1007/s10815-013-9983-3
  • Iwata K, Yumoto K. Analysis of Compaction İnitiation in Human Embryos by Using Time-Lapse Cinematography. J Assist Reprod Genet. 2014; 31: 421–426. doi: 10.1007/s10815-014-0195-2
  • Fleming TP, Sheth B, Fesenko I. Cell Adhesion in the Preimplantation Mammalian Embryo and its Role in Trophectoderm Differentiation and Blastocyst Morphogenesis. Front Biosci. 2001 ;6:D1000-7
  • Kerber ML, Cheney RE. Myosin-X: a MyTH-FERM Myosin at the Tips of Filopodia. J Cell Sci 2011; 124: 3733-3741; doi: 10.1242/jcs.023549
  • Fierro-González JC, White MD, Silva JC, Plachta N. Cadherin-Dependent Filopodia Control Preimplantation Embryo Compaction, Nat Cell Biol. 2013 Dec;15:1424-33. doi: 10.1038/ncb2875.
  • Samarage CR, White MD, Álvarez YD, Fierro-González JC, Henon Y, Jesudason EC. Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo. Dev Cell. 2015 24; 34: 435 – 47. doi: 10.1016/j.devcel.2015.07.004.
  • Maître JL, Niwayama R, Turlier H, Nédélec F, Hiiragi T. Pulsatile Cell-Autonomous Contractility Drives Compaction in the Mouse Embryo. Nat Cell Biol. 2015; 17: 849 – 55. doi: 10.1038/ncb3185.
  • Yamanaka Y, Ralston A, Stephenson RO, Rossant J. Cell and Molecular Regulation of the Mouse Blastocyst. Dev Dyn. 2006; 235: 2301 – 14.
  • Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y. Initiation of Hippo Signaling is Linked to Polarity Rather Than to Cell Position in the Pre-implantation Mouse Embryo. Development. 2014; 141: 2813 – 24. doi: 10.1242/dev.107276.
  • Korotkevich E, Niwayama R, Courtois A, et al. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Cell, 2017; 40: 235 – 247.
  • Watanabe T, Biggins JT, Tannan NB, Srinivas S. Limited Predictive Value of Blastomer Cleavage Angle in Trophododerm and İnner Cell Mass Specification. Development. 2014; 141: 2279 – 2288, doi: 10.1242/dev.103267
  • Tarkowski AK, Wróblewska J. Development of Blastomeres of Mouse Eggs İsolated at the 4- and 8-Cell Stage. J Embryol Exp Morphol. 1967; 18: 155 – 80.
  • Johnson MH, Ziomek CA. Induction of Polarity in Mouse 8-Cell Blastomeres: Specificity, Geometry, and Stability. J Cell Biol. 1981; 91: 303 – 8.
  • Wu G, Gentile L, Fuchikami T, Sutter J, Psathaki K. Initiation of Trophectoderm Lineage Specification in Mouse Embryos is İndependent of Cdx2. Development. 2010; 137: 4159 – 4169. doi: 10.1242/dev.056630
  • Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K. Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos, Curr Biol. 2013; 23: 1181 – 94. doi: 10.1016/j.cub.2013.05.014.
  • Chazaud C, Yamanaka Y. Lineage Specification in the Mouse Preimplantation Embryo. Development. 2016; 143: 1063 – 74. doi: 10.1242/dev.128314
  • Cao Z, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG. Transcription factor AP-2γ İnduces Early Cdx2 Expression and Represses HIPPO signaling to Specify the Trophectoderm Lineage. Development. 2015; 142: 1606 – 15. doi: 10.1242/dev.120238.
  • Alarcon VB. Cell polarity regulator PARD6B is Essential for Trophectoderm Formation in the Preimplantation Mouse Embryo. Biol Reprod. 2010; 83: 347 – 58. doi: 10.1095/biolreprod.110.084400.
  • Menchero S, Sainz de Aja J, Manzanares M. Our First Choice: Cellular and Genetic Underpinnings of Trophectoderm Identity and Differentiation in the Mammalian Embryo. Curr Top Dev Biol. 2018; 128: 59 – 80. doi: 10.1016/bs.ctdb.2017.10.009.
  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. Distinct Sequential Cell Behaviours Direct Primitive Endoderm Formation in the Mouse Blastocyst. Development. 2008; 135: 3081 – 91. doi: 10.1242/dev.021519.
  • Bessonnard S, De Mot L, Gonze D, et al. Gata6, Nanog and Erk Signaling Control Cell Fate in the Inner Cell Mass Through a Tristable Regulatory Network. Development. 2014; 141: 3637 – 48. doi: 10.1242/dev.109678.
  • Bassalert C, Valverde-Estrella L, Chazaud C. Primitive Endoderm Differentiation: From Specification to Epithelialization. Curr Top Dev Biol. 2018; 128: 81 – 104.
  • Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P. Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling. Dev Cell. 2011; 21: 1005 – 13. doi: 10.1016/j.devcel.2011.10.019.
  • Wicklow E, Blij S, Frum T, Hirate Y, Lang RA. HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass where it Promotes ICM Fates in the Mouse Blastocyst. 2014 PLoS Genet. 2014;10:e1004618. doi: 10.1371/journal.pgen.1004618.
  • Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-Autonomously Promotes Primitive Endoderm Development in the Mouse Blastocyst, Dev Cell. 2013; 25: 610 – 22. doi: 10.1016/j.devcel.2013.05.004.
  • Artus J, Kang M, Cohen-Tannoudji M, Hadjantonakis AK. PDGF Signaling is Required for Primitive Endoderm Cell Survival in the Inner Cell Mass of the Mouse Blastocyst. Stem Cells. 2013; 31: 1932 – 41. doi: 10.1002/stem.1442
  • Xenopoulos P, Kang M, Puliafito A, Di Talia S, Hadjantonakis AK. Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Mouse Blastocyst. Cell Rep. 2015; 10: 1508 – 1520.
  • Gerbe F, Cox B, Rossant J, Chazaud C. Dynamic Expression of Lrp2 Pathway Members Reveals Progressive Epithelial Differentiation of Primitive Endoderm in Mouse Blastocyst. Dev Biol. 2008; 313: 594 – 602.
  • Saiz N, Grabarek JB, Sabherwal N, Papalopulu N, Plusa B, Atypical Protein kinase C Couples Cell Sorting with Primitive Endoderm Maturation in the Mouse Blastocyst, Development. 2013; 140: 4311 – 22. doi: 10.1242/dev.093922.
  • Mutluay D, Öner H. Farelerde Preimplantasyon Döneminde Trofoektoderm ve İç Hücre Kütlesinin Oluşumu. MAKÜ Sağ.Bil. Enst. Derg. 2015; 3: 1 – 9.
  • Kang M, Garg V, Hadjantonakis AK. Lineage Establishment and Progression Within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Dev Cell. 2017; 41: 496 – 510.

Blastosist gelişimi; hücre soylarının farklanma mekanizmaları

Year 2018, Volume: 32 Issue: 3, 243 - 250, 15.12.2018

Abstract

Fertilizasyon sonucu oluşan zigot art arda
mitoz bölünmeler geçirir ve ilk 3 mitoz bölünme simetrik olup morfolojik olarak
birbirinin aynısı 8 adet blastomer oluşmaktadır. 8 hücreli aşamada embriyoda
önemli morfolojik değişiklikler meydana gelir. Bunlar; kompaksiyon,
polarizasyon ve asimetrik hücre bölünmesidir. Bu değişikliklerin ardından 8-32
hücreli morula evresinde embriyoda yer alan hücrelerde birincil soy farklanması
yani iç hücre kitlesi (ICM) ve dış hücre kitlesi (Trofoektoderm;TE) hücre
soyları oluşmaktadır. ICM’den kısa bir süre sonra ikincil soy farklanması
denilen epiblast (EPI) ve primitif endoderm (PE) hücre soyları farklanmaktadır.
Bu derlemede; preimplantasyon dönemde blastosist gelişim aşamaları sırasıyla ve
moleküler yolaklar üzerinden ayrıntılandırılacaktır.

References

  • Moore KL, Persaud TVN. The Developing Human: Clinically Oriented Embryology. 8th Edition. Saunders Elsevier, 2008. Cell Polarity-Dependent Regulation of Cell Allocation and the First Lineage Specification in the Preimplantation Mouse Embryo. Curr Top Dev Biol, 2018;128: 11-35.
  • Tabansky I, Lenarcic A, Draft RW et al. Developmental bias in Cleavage-Stage Mouse Blastomeres. Curr Biol. 2013; 23: 21–31. doi: 10.1016/j.cub.2012.10.054.
  • White MD, Bissiere S, Alvarez YD, Plachta N,Mouse Embryo Compaction. Curr Top Dev Biol. 2016;120:235-58. doi: 10.1016/bs.ctdb.2016.04.005.
  • Le Cruguel S, Ferré-L’Hôtellier V. Early Compaction at day 3 May Be a Useful Additional Criterion for Embryo Transfer, J Assist Reprod Genet. 2013; 30: 683–690. doi: 10.1007/s10815-013-9983-3
  • Iwata K, Yumoto K. Analysis of Compaction İnitiation in Human Embryos by Using Time-Lapse Cinematography. J Assist Reprod Genet. 2014; 31: 421–426. doi: 10.1007/s10815-014-0195-2
  • Fleming TP, Sheth B, Fesenko I. Cell Adhesion in the Preimplantation Mammalian Embryo and its Role in Trophectoderm Differentiation and Blastocyst Morphogenesis. Front Biosci. 2001 ;6:D1000-7
  • Kerber ML, Cheney RE. Myosin-X: a MyTH-FERM Myosin at the Tips of Filopodia. J Cell Sci 2011; 124: 3733-3741; doi: 10.1242/jcs.023549
  • Fierro-González JC, White MD, Silva JC, Plachta N. Cadherin-Dependent Filopodia Control Preimplantation Embryo Compaction, Nat Cell Biol. 2013 Dec;15:1424-33. doi: 10.1038/ncb2875.
  • Samarage CR, White MD, Álvarez YD, Fierro-González JC, Henon Y, Jesudason EC. Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo. Dev Cell. 2015 24; 34: 435 – 47. doi: 10.1016/j.devcel.2015.07.004.
  • Maître JL, Niwayama R, Turlier H, Nédélec F, Hiiragi T. Pulsatile Cell-Autonomous Contractility Drives Compaction in the Mouse Embryo. Nat Cell Biol. 2015; 17: 849 – 55. doi: 10.1038/ncb3185.
  • Yamanaka Y, Ralston A, Stephenson RO, Rossant J. Cell and Molecular Regulation of the Mouse Blastocyst. Dev Dyn. 2006; 235: 2301 – 14.
  • Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y. Initiation of Hippo Signaling is Linked to Polarity Rather Than to Cell Position in the Pre-implantation Mouse Embryo. Development. 2014; 141: 2813 – 24. doi: 10.1242/dev.107276.
  • Korotkevich E, Niwayama R, Courtois A, et al. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Cell, 2017; 40: 235 – 247.
  • Watanabe T, Biggins JT, Tannan NB, Srinivas S. Limited Predictive Value of Blastomer Cleavage Angle in Trophododerm and İnner Cell Mass Specification. Development. 2014; 141: 2279 – 2288, doi: 10.1242/dev.103267
  • Tarkowski AK, Wróblewska J. Development of Blastomeres of Mouse Eggs İsolated at the 4- and 8-Cell Stage. J Embryol Exp Morphol. 1967; 18: 155 – 80.
  • Johnson MH, Ziomek CA. Induction of Polarity in Mouse 8-Cell Blastomeres: Specificity, Geometry, and Stability. J Cell Biol. 1981; 91: 303 – 8.
  • Wu G, Gentile L, Fuchikami T, Sutter J, Psathaki K. Initiation of Trophectoderm Lineage Specification in Mouse Embryos is İndependent of Cdx2. Development. 2010; 137: 4159 – 4169. doi: 10.1242/dev.056630
  • Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K. Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos, Curr Biol. 2013; 23: 1181 – 94. doi: 10.1016/j.cub.2013.05.014.
  • Chazaud C, Yamanaka Y. Lineage Specification in the Mouse Preimplantation Embryo. Development. 2016; 143: 1063 – 74. doi: 10.1242/dev.128314
  • Cao Z, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG. Transcription factor AP-2γ İnduces Early Cdx2 Expression and Represses HIPPO signaling to Specify the Trophectoderm Lineage. Development. 2015; 142: 1606 – 15. doi: 10.1242/dev.120238.
  • Alarcon VB. Cell polarity regulator PARD6B is Essential for Trophectoderm Formation in the Preimplantation Mouse Embryo. Biol Reprod. 2010; 83: 347 – 58. doi: 10.1095/biolreprod.110.084400.
  • Menchero S, Sainz de Aja J, Manzanares M. Our First Choice: Cellular and Genetic Underpinnings of Trophectoderm Identity and Differentiation in the Mammalian Embryo. Curr Top Dev Biol. 2018; 128: 59 – 80. doi: 10.1016/bs.ctdb.2017.10.009.
  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. Distinct Sequential Cell Behaviours Direct Primitive Endoderm Formation in the Mouse Blastocyst. Development. 2008; 135: 3081 – 91. doi: 10.1242/dev.021519.
  • Bessonnard S, De Mot L, Gonze D, et al. Gata6, Nanog and Erk Signaling Control Cell Fate in the Inner Cell Mass Through a Tristable Regulatory Network. Development. 2014; 141: 3637 – 48. doi: 10.1242/dev.109678.
  • Bassalert C, Valverde-Estrella L, Chazaud C. Primitive Endoderm Differentiation: From Specification to Epithelialization. Curr Top Dev Biol. 2018; 128: 81 – 104.
  • Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P. Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling. Dev Cell. 2011; 21: 1005 – 13. doi: 10.1016/j.devcel.2011.10.019.
  • Wicklow E, Blij S, Frum T, Hirate Y, Lang RA. HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass where it Promotes ICM Fates in the Mouse Blastocyst. 2014 PLoS Genet. 2014;10:e1004618. doi: 10.1371/journal.pgen.1004618.
  • Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-Autonomously Promotes Primitive Endoderm Development in the Mouse Blastocyst, Dev Cell. 2013; 25: 610 – 22. doi: 10.1016/j.devcel.2013.05.004.
  • Artus J, Kang M, Cohen-Tannoudji M, Hadjantonakis AK. PDGF Signaling is Required for Primitive Endoderm Cell Survival in the Inner Cell Mass of the Mouse Blastocyst. Stem Cells. 2013; 31: 1932 – 41. doi: 10.1002/stem.1442
  • Xenopoulos P, Kang M, Puliafito A, Di Talia S, Hadjantonakis AK. Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Mouse Blastocyst. Cell Rep. 2015; 10: 1508 – 1520.
  • Gerbe F, Cox B, Rossant J, Chazaud C. Dynamic Expression of Lrp2 Pathway Members Reveals Progressive Epithelial Differentiation of Primitive Endoderm in Mouse Blastocyst. Dev Biol. 2008; 313: 594 – 602.
  • Saiz N, Grabarek JB, Sabherwal N, Papalopulu N, Plusa B, Atypical Protein kinase C Couples Cell Sorting with Primitive Endoderm Maturation in the Mouse Blastocyst, Development. 2013; 140: 4311 – 22. doi: 10.1242/dev.093922.
  • Mutluay D, Öner H. Farelerde Preimplantasyon Döneminde Trofoektoderm ve İç Hücre Kütlesinin Oluşumu. MAKÜ Sağ.Bil. Enst. Derg. 2015; 3: 1 – 9.
  • Kang M, Garg V, Hadjantonakis AK. Lineage Establishment and Progression Within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Dev Cell. 2017; 41: 496 – 510.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Funda Yılmaz 0000-0003-0505-3905

İşıl Tekmen This is me 0000-0003-0521-2654

Publication Date December 15, 2018
Submission Date July 11, 2018
Published in Issue Year 2018 Volume: 32 Issue: 3

Cite

Vancouver Yılmaz F, Tekmen İ. Blastosist gelişimi; hücre soylarının farklanma mekanizmaları. J DEU Med. 2018;32(3):243-50.