Research Article
BibTex RIS Cite

EVALUATION OF SODIUM, POTASSIUM AND HEMOGLOBIN VALUES MEASURED IN BLOOD GASES, BIOCHEMISTRY AND BLOOD COUNTING DEVICES ACCORDING TO THE TOTAL ALLOWABLE ERROR LIMITS

Year 2024, Volume: 38 Issue: 1, 11 - 18, 24.05.2024
https://doi.org/10.18614/deutip.1367851

Abstract

Objective: In our study, we aimed to calculate the 95% confidence intervals of sodium, potassium and hemoglobin values measured simultaneously in biochemistry, blood count and blood gas devices and to compare them with the total allowable error limits.
Materials and Methods: Sodium, potassium and hemoglobin values of 2341 patients admitted to our hospital in September-November 2021 were analyzed retrospectively. Simultaneous results obtained from blood gas devices were compared with data obtained from biochemistry and blood counters. The sodium test was categorized as hyponatremia for values <136 mmol/L, normonatremia for values 136-145 mmol/L, and hypernatremia for values >145 mmol/L. Potassium test was grouped as hypopotassemia for values <3.5 mmol/L, normopotassemia for values 3.5-5.1 mmol/L, and hyperpotassemia for values >5.1 mmol/L. Hemoglobin test was grouped according to the values determined by the World Health Organization for men and women. For each subgroup, 95% confidence intervals were calculated according to the formula "Bias% + Z x Standard error of the mean" and compared with the total allowable error limits.
Results: All levels of sodium test and only high levels of hemoglobin were found to be incompatible because the 95% confidence interval value was outside the allowable error limits.
Conclusion: The obtained 95% confidence interval values showed that sodium and hemoglobin results should be evaluated according to the clinical condition of the patient. It was thought that the different results obtained were due to the analysis of the samples by different devices. It should also be kept in mind that different device results should not be compared in the follow-up of patients.

References

  • 1. Lee EJ, Do Shin S, Song KJ, Kim SC, Cho JS, Lee SC et al. A point-of-care chemistry test for reduction of turnaround and clinical decision time. The American journal of emergency medicine 2011;29(5):489-495.
  • 2. Jain A, Subhan I, Joshi M. Comparison of the point-of-care blood gas analyzer versus the laboratory auto-analyzer for the measurement of electrolytes. International journal of emergency medicine 2009;2(2):117-120.
  • 3. Rıfai N, Horvath AR, Wittwer CT. Analytes. Tietz textbook of clinical chemistry and molecular diagnostics. 6th ed. St. Louis: Elsevier; 2018. p.604-606.
  • 4. Pungor E. Working mechanism of ionhselective electrodes. Pure and applied chemistry 1992;64(4):503-507.
  • 5. Gehring H, Hornberger C, Dibbelt L, Roth‐Isigkeit A, Gerlach K, Schumacher J et al. Accuracy of point‐of‐care‐testing (POCT) for determining hemoglobin concentrations: Acta Anaesthesiologica Scandinavica 2002;46(8):980-986.
  • 6. Nanda SK, Ray L, Dinakaran A. Agreement of arterial sodium and arterial potassium levels with venous sodium and venous potassium in patients admitted to intensive care unit. Journal of clinical and diagnostic research 2015;9(2):28.
  • 7. Altunok I, Aksel G, Eroğlu SE. Correlation between sodium, potassium, hemoglobin, hematocrit, and glucose values as measured by a laboratory autoanalyzer and a blood gas analyzer. The American Journal of Emergency Medicine 2019;37(6):1048-1053. 8. Prakash S, Bihari S, Lim ZY, Verghese S, Kulkarni H, Bersten AD. Concordance between point‐of‐care blood gas analysis and laboratory autoanalyzer in measurement of hemoglobin and electrolytes in critically ill patients. Journal of Clinical Laboratory Analysis 2019;32(6):224-225.
  • 9. NCCLS. Method comparison and bias estimation using patient samples; Approved guideline. National Committee for Clinical Laboratory Standards documents EP9-A. NCCLS, Wayne, PA, 1995.
  • 10. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. WHO/NMH/NHD/MNM/11.1. Geneva: World Health Organization; 2011 [Erişim Tarihi: 02 Eylül 2023]. Erişim Adresi: http://www.who.int/vmnis/indicators/haemoglobin.pdf
  • 11. Westgard JO, Carey RN, Wold S. Criteria for judging precision and accuracy in method development and evaluation. Clinical chemistry 1974;20(7):825-833.
  • 12. Westgard JO, Hunt MR. Use and interpretation of common statistical tests in method-comparison studies. Clinical Chemistry 1973;19:49-57.
  • 13. Westgard JO, Barry PL, Quam EF, Ehrmeyer SS. Basic method validation: training in analytical quality management for healthcare laboratories. Westgard Quality Corporation, Inc., Madison, WI, 2008.
  • 14. Prichard JS, French JS, Alvar N. Clinical evaluation of the ABL-77 for point-of-care analysis in the cardiovascular operating room. The Journal of extra-corporeal technology 2006;38(2):128.
  • 15. Gupta S, Gupta AK, Singh K, Verma M. Are sodium and potassium results on arterial blood gas analyzer equivalent to those on electrolyte analyzer? Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine 2016;20(4):233.
  • 16. CMS, HSS. Clinical Laboratory Improvement Amendments of 1988 (CLIA) Proficiency Testing Regulations Related to Analytes and Acceptable Performance. Federal Register 2019; 84:1536-1567.
  • 17. Budak Y, Huysal K, Polat M. Use of a blood gas analyzer and a laboratory autoanalyzer in routine practice to measure electrolytes in intensive care unit patients. BMC Anesthesiology 2012;12(1):1-7
  • 18. Chopra P, Datta SK. Discrepancies in electrolyte measurements by direct and indirect ion selective electrodes due to interferences by proteins and lipids. Journal of Laboratory Physicians 2020;12(2):84-91.
  • 19. Gohel M, Makadia JS, Chakrabarti C. Effect of hypoproteinemia on electrolyte measurement by direct and indirect ion selective electrode methods. Journal of Laboratory Physicians 2021;13(2):144-147.
  • 20. Goyal B, Datta SK, Mir AA, Ikkurthi S, Prasad R, Pal A. Increasing glucose concentrations interfere with estimation of electrolytes by indirect ion selective electrode method. Indian Journal of Clinical Biochemistry, 2016;31:224-230.
  • 21. Hohmann C, Pfister R, Kuhr K, Merkle J, Hinzmann J, Michels G. Determination of Electrolytes in Critical Illness Patients at Different pH Ranges. Whom Shall We Believe, the Blood Gas analysis or the Laboratory Autoanalyzer? Critical Care Research and Practice 2019.

KAN GAZLARI, BİYOKİMYA VE KAN SAYIM CİHAZLARINDA ÖLÇÜLEN SODYUM, POTASYUM VE HEMOGLOBİN DEĞERLERİNİN TOTAL İZİN VERİLEN HATA SINIRLARINA GÖRE DEĞERLENDİRİLMESİ

Year 2024, Volume: 38 Issue: 1, 11 - 18, 24.05.2024
https://doi.org/10.18614/deutip.1367851

Abstract

Giriş: Çalışmamızda biyokimya, kan sayım ve kan gazı cihazlarında eş zamanlı ölçülen sodyum, potasyum ve hemoglobin değerlerinin %95 güven aralığının hesaplanması ve toplam izin verilen hata sınırları ile karşılaştırılması amaçlandı.
Gereç ve Yöntem: Hastanemize 2021 Eylül-Kasım aylarında başvuran 2341 hastanın sodyum, potasyum ve hemoglobin değerleri retrospektif olarak incelendi. Kan gazı cihazlarından eş zamanlı elde edilen sonuçlar, biyokimya ve kan sayım cihazından elde edilen veriler ile karşılaştırıldı. Sodyum testi, 136 mmol/L’nin altındaki değerleri için hiponatremi, 136-145 mmol/L değerleri için normonatremi, 145 mmol/L’nin üzerindeki değerleri için hipernatremi olacak şekilde gruplandırıldı. Potasyum testi, 3,5 mmol/L’nin altındaki değerleri için hipopotasemi, 3,5-5,1 mmol/L değerleri için normopotasemi, 5,1 mmol/L’nin üzerindeki değerleri için hiperpotasemi olacak şekilde gruplandırıldı. Hemoglobin testi ise kadın ve erkekler için Dünya Sağlık Örgütü’nün belirlediği değerlere göre gruplandırıldı. Her bir alt grup için “%Bias + Z x Ortalamanın standart hatası” formülüne göre %95 güven aralığı hesaplandı ve toplam izin verilen hata sınırları ile karşılaştırıldı.
Bulgular: Sodyumun tüm düzeyleri ile hemoglobinin sadece yüksek düzeylerinin %95 güven aralığı değerleri, toplam izin verilen hata sınırları dışında bulunduğu için uyumlu olmadığı görüldü.
Sonuç: Elde edilen %95 güven aralığı değerleri, sodyum ve hemoglobin sonuçlarının hastanın klinik durumuna göre değerlendirilmesi gerektiğini göstermiştir. Elde edilen farklı sonuçların numunelerin farklı cihazlarla analiz edilmesinden kaynaklandığı düşünülmüştür. Ayrıca hastaların takibinde farklı cihaz sonuçlarının karşılaştırılmaması gerektiği de unutulmamalıdır.

References

  • 1. Lee EJ, Do Shin S, Song KJ, Kim SC, Cho JS, Lee SC et al. A point-of-care chemistry test for reduction of turnaround and clinical decision time. The American journal of emergency medicine 2011;29(5):489-495.
  • 2. Jain A, Subhan I, Joshi M. Comparison of the point-of-care blood gas analyzer versus the laboratory auto-analyzer for the measurement of electrolytes. International journal of emergency medicine 2009;2(2):117-120.
  • 3. Rıfai N, Horvath AR, Wittwer CT. Analytes. Tietz textbook of clinical chemistry and molecular diagnostics. 6th ed. St. Louis: Elsevier; 2018. p.604-606.
  • 4. Pungor E. Working mechanism of ionhselective electrodes. Pure and applied chemistry 1992;64(4):503-507.
  • 5. Gehring H, Hornberger C, Dibbelt L, Roth‐Isigkeit A, Gerlach K, Schumacher J et al. Accuracy of point‐of‐care‐testing (POCT) for determining hemoglobin concentrations: Acta Anaesthesiologica Scandinavica 2002;46(8):980-986.
  • 6. Nanda SK, Ray L, Dinakaran A. Agreement of arterial sodium and arterial potassium levels with venous sodium and venous potassium in patients admitted to intensive care unit. Journal of clinical and diagnostic research 2015;9(2):28.
  • 7. Altunok I, Aksel G, Eroğlu SE. Correlation between sodium, potassium, hemoglobin, hematocrit, and glucose values as measured by a laboratory autoanalyzer and a blood gas analyzer. The American Journal of Emergency Medicine 2019;37(6):1048-1053. 8. Prakash S, Bihari S, Lim ZY, Verghese S, Kulkarni H, Bersten AD. Concordance between point‐of‐care blood gas analysis and laboratory autoanalyzer in measurement of hemoglobin and electrolytes in critically ill patients. Journal of Clinical Laboratory Analysis 2019;32(6):224-225.
  • 9. NCCLS. Method comparison and bias estimation using patient samples; Approved guideline. National Committee for Clinical Laboratory Standards documents EP9-A. NCCLS, Wayne, PA, 1995.
  • 10. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. WHO/NMH/NHD/MNM/11.1. Geneva: World Health Organization; 2011 [Erişim Tarihi: 02 Eylül 2023]. Erişim Adresi: http://www.who.int/vmnis/indicators/haemoglobin.pdf
  • 11. Westgard JO, Carey RN, Wold S. Criteria for judging precision and accuracy in method development and evaluation. Clinical chemistry 1974;20(7):825-833.
  • 12. Westgard JO, Hunt MR. Use and interpretation of common statistical tests in method-comparison studies. Clinical Chemistry 1973;19:49-57.
  • 13. Westgard JO, Barry PL, Quam EF, Ehrmeyer SS. Basic method validation: training in analytical quality management for healthcare laboratories. Westgard Quality Corporation, Inc., Madison, WI, 2008.
  • 14. Prichard JS, French JS, Alvar N. Clinical evaluation of the ABL-77 for point-of-care analysis in the cardiovascular operating room. The Journal of extra-corporeal technology 2006;38(2):128.
  • 15. Gupta S, Gupta AK, Singh K, Verma M. Are sodium and potassium results on arterial blood gas analyzer equivalent to those on electrolyte analyzer? Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine 2016;20(4):233.
  • 16. CMS, HSS. Clinical Laboratory Improvement Amendments of 1988 (CLIA) Proficiency Testing Regulations Related to Analytes and Acceptable Performance. Federal Register 2019; 84:1536-1567.
  • 17. Budak Y, Huysal K, Polat M. Use of a blood gas analyzer and a laboratory autoanalyzer in routine practice to measure electrolytes in intensive care unit patients. BMC Anesthesiology 2012;12(1):1-7
  • 18. Chopra P, Datta SK. Discrepancies in electrolyte measurements by direct and indirect ion selective electrodes due to interferences by proteins and lipids. Journal of Laboratory Physicians 2020;12(2):84-91.
  • 19. Gohel M, Makadia JS, Chakrabarti C. Effect of hypoproteinemia on electrolyte measurement by direct and indirect ion selective electrode methods. Journal of Laboratory Physicians 2021;13(2):144-147.
  • 20. Goyal B, Datta SK, Mir AA, Ikkurthi S, Prasad R, Pal A. Increasing glucose concentrations interfere with estimation of electrolytes by indirect ion selective electrode method. Indian Journal of Clinical Biochemistry, 2016;31:224-230.
  • 21. Hohmann C, Pfister R, Kuhr K, Merkle J, Hinzmann J, Michels G. Determination of Electrolytes in Critical Illness Patients at Different pH Ranges. Whom Shall We Believe, the Blood Gas analysis or the Laboratory Autoanalyzer? Critical Care Research and Practice 2019.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Analytical Biochemistry
Journal Section Research Articles
Authors

Serap Uysal 0000-0002-9773-112X

Kaan Kuzu 0000-0003-0888-9177

Giray Bozkaya 0000-0002-5756-5796

Publication Date May 24, 2024
Submission Date September 30, 2023
Published in Issue Year 2024 Volume: 38 Issue: 1

Cite

Vancouver Uysal S, Kuzu K, Bozkaya G. KAN GAZLARI, BİYOKİMYA VE KAN SAYIM CİHAZLARINDA ÖLÇÜLEN SODYUM, POTASYUM VE HEMOGLOBİN DEĞERLERİNİN TOTAL İZİN VERİLEN HATA SINIRLARINA GÖRE DEĞERLENDİRİLMESİ. J DEU Med. 2024;38(1):11-8.