Review
BibTex RIS Cite

Improving PMMA in prosthodontics: a literature review

Year 2025, Volume: 26 Issue: 1, 5 - 10, 28.03.2025

Abstract

Since its introduction in the 1930s, PMMA has been the primary denture base material in use. This is due to the fact that PMMA is affordable, visually pleasing, and medically compatible. Nonetheless, PMMA’s intrinsic flaws-primarily its poor flexural strength and impact resistance-make it imperative to look for solutions to address these two crucial deficiencies. The latest developments involve the insertion of silver, zirconium oxide (ZrO2), and titanium dioxide (TiO2) nanoparticles, which are said to increase the mechanical characteristics even further, such as flexural strength, hardness, and wear resistance. To further increase the impact strength and durability of PMMA, fibers can be added to the material. These fibers can be synthetic (like polyester or carbon) or natural (like sisal or bamboo). Improvements in surface treatments and bonding methods have also strengthened PMMA’s binding and made it more compatible with other materials. Aging research demonstrates that reinforced PMMA is more resilient to environmental stress, making it a material of choice for long-term dental applications. Furthermore, the use of antimicrobial compounds and nanoparticles offers additional benefits, such as the presence of antifungal qualities that mitigate biofilm development and improve the overall biocompatibility of dental prostheses. These developments thus suggest that there is still a lot of promise for the modified PMMA in dental applications, both in terms of improving performance and extending its useful life in a clinical setting. The aim of this review is to explore the advancements in reinforcing PMMA (polymethyl methacrylate) for dental prosthetics by analyzing various modifications.

References

  • Apimanchindakul C, Na Nan P, Aimjirakul N. Effect of reinforced self-cured acrylic resin on flexural strength. Int J Dent. 2022;2022:2698995. doi:10.1155/2022/2698995
  • Altarazi A, Haider J, Alhotan A, Silikas N, Devlin H. 3D printed denture base material: the effect of incorporating TiO2 nanoparticles and artificial ageing on the physical and mechanical properties. Dent Mater. 2023;39(12):1122-1136. doi:10.1016/j.dental.2023.10.005
  • Gad MM, Rahoma A, Abualsaud R, et al. Influence of artificial aging and ZrO2 nanoparticle-reinforced repair resin on the denture repair strength. J Clin Exp Dent. 2020;12(4):e354-e362. doi:10.4317/jced.56610
  • Sharhan HA, N.rasheed Z, Oleiwi JK. Effect of polypropylene (PP) and polyacrylonitrile (PAN) fibers reinforced acrylic resin on compression, hardness and surface-roughness for denture applications. Key Engineer Mater. 2022;911:9-16. doi:10.4028/p-197rys
  • Anehosur GV, Kulkarni RD, Naik MG, Nadiger RK. Synthesis and determination of antimicrobial activity of visible light activated TiO2 nanoparticles with polymethyl methacrylate denture base resin against Staphylococcus aureus. J Gerontol Geriat Res. 2012;1(1):103-111.doi:10. 4172/jggr.1000103
  • Sun J, Wang L, Wang J, et al. Characterization and evaluation of a novel silver nanoparticles-loaded polymethyl methacrylate denture base: in vitro and in vivo animal study. Dent Mater J. 2021;40(5):1100-1108. doi: 10.4012/dmj.2020-129
  • Sati S, Bamola VD, Chaudhry R, Jit BP, Gupta M. Nanoparticles and inert coating materials: a potential enhancer of antimicrobial property of polymethyl-methacrylate (PMMA) based denture. J Dent Oral Epidemiol. 2023;3(2):1-12. doi:JDOE2200107
  • Choubisa D. An overview of applications of nanotechnology in prosthodontics. J Prosthodont Dent. 2022;17,1-22.
  • Köroğlu A, Şahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins. J Appl Oral Sci. 2016;24(6):590-596. doi:10.1590/1678-775720160185
  • Altaie SF. Tribological, microhardness and color stability properties of a heat-cured acrylic resin denture base after reinforcement with different types of nanofiller particles. Dent Med Probl. 2023;60(2):295-302. doi: 10.17219/dmp/137611
  • Barzegar A, Ghaffari T, Parizad A. Effect of incorporating aluminum oxide nanoparticles on thermal conduction and flexural strength of acrylic resins. Dent Res J (Isfahan). 2022;19:33.
  • Machado-Santos L, Silikas N, Baroudi K, Sinhoreti MA, Brandt WC, Liporoni PC. Mechanical performance of experimental acrylic resins modified by nanoparticles after chemical and mechanical degradation. J Clin Exp Dent. 2020;12(12):e1157-e1163. doi:10.4317/jced.57265
  • Elhmali HT, Stajcic I, Petrovic M, et al. Mechanical performance of denture acrylic resin modified with poly (4-styrenesulfonic acid-co-maleic anhydride) sodium salt and strontium titanate. Polym Compos. 2024;45(12):11404-11415. doi:10.1002/pc.28574
  • Machado-Santos L, Baroudi K, Silikas N, et al. Physical analysis of an acrylic resin modified by metal and ceramic nanoparticles. Dent Med Probl. 2023;60(4):657-664. doi:10.17219/dmp/171844
  • Altaie SF. Tribological, microhardness and color stability properties of a heat-cured acrylic resin denture base after reinforcement with different types of nanofiller particles. Dent Med Probl. 2023;60(2):295-302. doi: 10.17219/dmp/137611
  • Barapatre D, Somkuwar S, Mishra SK, Chowdhary R. The effects of reinforcement with nanoparticles of polyetheretherketone, zirconium oxide and its mixture on flexural strength of PMMA resin. Eur Oral Res. 2022;56(2):61-66. doi:10.26650/eor.2022904564
  • Karci M, Demir N, Yazman S. Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. J Prosthodont. 2019;28(5):572-579. doi:10.1111/jopr.12974
  • Alzayyat ST, Almutiri GA, Aljandan JK, et al. Antifungal efficacy and physical properties of poly(methylmethacrylate) denture base material reinforced with SiO2 nanoparticles. J Prosthodont. 2021;30(6):500-508. doi:10.1111/jopr.13271
  • Gad MMA, Abualsaud R, Al-Thobity AM, et al. Effect of SiO2 nanoparticles addition on the flexural strength of repaired acrylic denture base. Eur J Dent. 2020;14(1):19-23. doi:10.1055/s-0039-1701076
  • Chen MH. Update on dental nanocomposites. J Dent Res. 2010;89(6):549-560. doi:10.1177/0022034510363765
  • Kuşçu HYY. Utilization of nanomaterials in prosthetic dental treatment. HRU Int J Dent Oral Res. 2023;3(2):117-123. doi:10.61139/ijdor.1270852
  • Santulli C. Nanostructured polymer composites for dental fillings. Nanostructured polymer composites for biomedical applications. Elsevier, 2019:277-293.
  • Acosta-Torres LS, Lpez-Marín LM, Núñez-Anita RE, Hernández-Padrón G, Castaño VM. Biocompatible metal-oxide nanoparticles: nanotechnology improvement of conventional prosthetic acrylic resins. J Nanomater. 2011;2011(1):941561. doi:10.1155/2011/941561
  • Bastos NA, Bitencourt SB, Martins EA, De Souza GM. Review of nano-technology applications in resin-based restorative materials. J Esthet Restor Dent. 2021;33(4):567-582. doi:10.1111/jerd.12699
  • Surajarusarn B, Thaiwattananon S, Thanawan S, Mougin K, Amornsakchai T. Realising the potential of pineapple leaf fiber as green and high-performance reinforcement for natural rubber composite with liquid functionalized rubber. Fibers Polymers. 2021;22(9):2543-2551.
  • Bittner CM, Oettel V. Fiber reinforced concrete with natural plant fibers investigations on the application of bamboo fibers in ultra-high performance concrete. Sustainability. 2022;14(19):12011. doi:10.3390/su 141912011
  • Andrzejewski J, Szostak M. Preparation and characterization of the injection molded polymer composites based on natural/synthetic fiber reinforcement. Lecture Notes Mechanic Engineer. 2019:473-484.
  • Alam MI, Maraz KM, Khan RA, Alam MI, Maraz KM, Khan RA. A review on the application of high-performance fiber-reinforced polymer composite materials. GSC Advanced Res Rev. 2022;10(2):20-36. doi:10. 30574/gscarr.2022.10.2.0036
  • Benyamin B, Amurwaningsih M, Darwis WY. The sisal fiber (agave sisalana) alkalization effects on the impact strength of fiber reinforced acrylic resin. J Medali. 2022;4(3):25-33. doi:10.30659/medali.4.3.25-33
  • Sharhan HA, Alraziqi ZNR, Oleiwi JK. Effect of polypropylene (PP) and polyacrylonitrile (PAN) fibers reinforced acrylic resin on compression, hardness and surface-roughness for denture applications. Key Engineer Mater. 2022;911:9-16. doi:10.4028/p-197rys
  • Gonçalves NI, Münchow EA, Santos JD, et al. The role of polymeric nanofibers on the mechanical behavior of polymethyl methacrylate resin. J Mech Behav Biomed Mater. 2020;112:104072. doi:10.1016/j.jmbbm.2020.104072
  • Ardakani ZH, Giti R, Dabiri S, Hosseini AH, Moayedi M. Flexural strength of polymethyl methacrylate reinforced with high-performance polymer and metal mesh. Dent Res J (Isfahan). 2021;18:30.
  • Nayak K, Rahangdale TD, Shrivastava S, Newaskar PS, Mishra N, Noorani SM. Evaluation and comparison of mechanical properties of heat polymerized acrylic resin after reinforcement of different fibers in different patterns: an in vitro study. Cureus. 2023;15(5):e39564. doi:10. 7759/cureus.39564
  • Hu C, Lin YQ, Yang YJ, et al. High-performance dental composites based on hierarchical reinforcements. J Dent Res. 2022;101(8):912-920. doi:10.1177/00220345221074909
  • Vallittu PK. Fibre-reinforced composites (FRCs) as dental materials. Non Metall Biomater Tooth Repair Replacem. 2013:352-374.
  • Kumar A, Tekriwal S, Rajkumar B, Gupta V, Rastogi R. A review on fibre reinforced composite resins. Ann Prosthodont Restorat Dent. 2016;2(4): 11-16.
  • Klaiber D, Spintzyk S, Geis-Gerstorfer J, Klink A, Unkovskiy A, Huettig F. Bonding behavior of conventional PMMA towards industrial CAD/CAM PMMA and artificial resin teeth for complete denture manufacturing in a digital workflow. Materials (Basel). 2021;14(14):3822. doi:10.3390/ma14143822
  • Gad MM, Rahoma A, Abualsaud R, et al. Impact of different surface treatments and repair material reinforcement on the flexural strength of repaired PMMA denture base material. Dent Mater J. 2020;39(3):471-482. doi:10.4012/dmj.2018-436
  • Calderon Salazar P, Huybrechts L. PD otherwise will be pluriversal (or it won’t be). ACM Int Confer Proceed Series. 2020;1:107-115. doi:10.1145/ 3385010.3385027
  • Schauperl Z, Ivanković L, Bauer L, Šolić S, Ivanković M. Effects of different surface treatments of woven glass fibers on mechanical properties of an acrylic denture base material. Int J Mol Sci. 2023;24(2):909. doi:10.3390/ijms24020909
  • Taczała-Warga J, Sawicki J, Krasowski M, Sokołowski J. The effect of acrylic surface preparation on bonding denture teeth to cellulose fiber-reinforced denture base acrylic. J Funct Biomater. 2022;13(4):183. doi:10. 3390/jfb13040183
  • Deb S, Muniswamy L, Thota G, et al. Impact of surface treatment with different repair acrylic resin on the flexural strength of denture base resin: an in vitro study. J Contemp Dent Pract. 2020;21(10):1137-1140.
  • Chladek G, Adeeb S, Pakieła W, Coto NP. Effect of different surface treatments as methods of improving the mechanical properties after repairs of PMMA for dentures. Materials (Basel). 2024;17(13):3254. doi: 10.3390/ma17133254
  • Ariyani S, Chairunnisa R. The effect of surface treatment and thermocycling on bond strength between silicon soft denture lining and acrylic resin denture base. J Pharmaceut Negat Res. 2023:2943-2952. doi: 10.47750/pnr.2023.14.03.369
  • Karaokutan I, Ayvaz I. Effect of various surface treatments on relining bond strength of CAD-CAM denture base materials. J Prosthodont. 2024:1-7. doi:10.1111/jopr.13831
  • Klaiber D, Spintzyk S, Geis-Gerstorfer J, Klink A, Unkovskiy A, Huettig F. Bonding behavior of conventional PMMA towards industrial CAD/CAM PMMA and artificial resin teeth for complete denture manufacturing in a digital workflow. Materials (Basel). 2021;14(14):3822. doi:10.3390/ma14143822
  • Kowalski R, Kozak BM, Sobolewska E. Contemporary hybrid acrylic materials and modern thermoplastics in the manufacture of dental prostheses. Pomeranian J Life Sci. 2023;69(1):39-45. doi:10.21164/pomjlifesci. 904
  • Hakala P, Orell O, Sarlin E, Pääkkönen E, Jutila L, Kanerva M. Durability of sandwich structures with a maximized natural raw material basis: comparison of expanded polystyrene, cellulose foam and polylactic acid subjected to UV-rain aging. Rakenteiden Mekaniikka. 2023;56(1):24-40. doi:10.23998/rm.120756
  • Davies P, Le Gac PY, Le Gall M. Influence of sea water aging on the mechanical behaviour of acrylic matrix composites. Appl Comp Mater. 2017;24(1):97-111.
  • Al-Jmmal AY, Mohammed NZ, Al-Kateb HM. The effect of aging on hardness of heat cured denture base resin modified with recycled acrylic resin. Clin Exp Dent Res. 2024;10(1):e828. doi:10.1002/cre2.828
  • Rahaman Ali AAA, John J, Mani SA, El-Seedi HR. Effect of thermal cycling on flexural properties of microcrystalline cellulose-reinforced denture base acrylic resins. J Prosthodont. 2020;29(7):611-616. doi:10. 1111/jopr.13018
  • Çakmak G, Donmez MB, Akay C, Abou-Ayash S, Schimmel M, Yilmaz B. Effect of thermal cycling on the flexural strength and hardness of new-generation denture base materials. J Prosthodont. 2023;32(S1):81-86. doi:10.1111/jopr.13615
  • Apimanchindakul C, Na Nan P, Aimjirakul N. Effect of reinforced self-cured acrylic resin on flexural strength. Int J Dent. 2022;2022:2698995. doi:10.1155/2022/2698995
  • Kondratiev A, Kochanov V, Yuresko T, Tsaritsynskyi A, Nabokina T. Durability of acrylic products during heat aging. Solid State Phenomena. 2022;334:145-153. doi:10.4028/p-8qo1zu
  • Paglia CS, Krattiger A. The dimensional stability and durability of acrylic resins for the injection of cementitious systems. Eur J Formal Sci Engineer. 2020;4(2):124-129.
  • White CC, Tan KT, Hunston DL, Forster AM, Jacobs DS. Impact of environmental factors on polymeric films used in protective glazing systems. Serv Life Predict. 2015:231-249. doi:10.1007/978-3-319-06034-7-1
  • Jang EJ, Hong YJ, Jeong YH, et al. In vitro antifungal and physicochemical properties of polymerized acrylic resin containing strontium-modified phosphate-based glass. BMC Oral Health. 2024;24(1):775. doi:10.1186/s12903-024-04547-5
  • AlEraky DM, Abuohashish HM, Gad MM, et al. The antifungal and antibiofilm activities of caffeine against candida albicans on polymethyl methacrylate denture base material. Biomedicines. 2022;10(9):2078. doi: 10.3390/biomedicines10092078
  • Alzayyat ST, Almutiri GA, Aljandan JK, et al. Antifungal efficacy and physical properties of poly(methylmethacrylate) denture base material reinforced with SiO2 nanoparticles. J Prosthodont. 2021;30(6):500-508. doi:10.1111/jopr.13271
  • Kachoei M, Divband B, Rahbar M, Esmaeilzadeh M, Ghanizadeh M, Alam M. A novel developed bioactive composite resin containing silver/zinc oxide (Ag/ZnO) nanoparticles as an antimicrobial material against Streptococcus mutans, Lactobacillus, and Candida albicans. Evid Based Complement Alternat Med. 2021;2021:4743411. doi:10.1155/ 2021/4743411
  • Robu A, Antoniac A, Grosu E, et al. Additives imparting antimicrobial properties to acrylic bone cements. Materials (Basel). 2021;14(22):7031. doi:10.3390/ma14227031
  • Menikheim S, Leckron J, Duffy M, et al. Biocompatible nanocapsules for self-healing dental resins and bone cements. ACS Omega. 2022;7(36): 31726-31735. doi:10.1021/acsomega.2c02080
  • Yan HY, Yang HY, Huang C. Advances of self-healing dental composite resin. Chinese J Stomatol. 2017;52(9):582-584. doi:10.3760/cma.j.issn. 1002-0098.2017.09.016
  • Fugolin AP, Pfeifer CS. Strategies to design extrinsic stimuli-responsive dental polymers capable of autorepairing. JADA Found Sci. 2022;1: 100013. doi:10.1016/j.jfscie.2022.100013
  • Ilyaei S, Sourki R, Haji Y, Akbari A. Capsule-based healing systems in composite materials: a review. Critic Rev Solid State Mater Sci. 2020; 2021(6):491-531. doi:10.1080/10408436.2020.1852912
  • Harb SV, Trentin A, de Souza TAC, et al. Effective corrosion protection by eco-friendly self-healing PMMA-cerium oxide coatings. Chemic Engineer J. 2020;383:123219. doi:10.1016/j.cej.2019.123219
There are 66 citations in total.

Details

Primary Language English
Subjects Dental Materials and Equipment, Prosthodontics
Journal Section Review
Authors

Nuran Yanıkoğlu 0000-0001-7677-1248

Osayd Alawawda 0009-0008-3954-6373

Publication Date March 28, 2025
Submission Date December 7, 2024
Acceptance Date March 14, 2025
Published in Issue Year 2025 Volume: 26 Issue: 1

Cite

AMA Yanıkoğlu N, Alawawda O. Improving PMMA in prosthodontics: a literature review. Dicle Dent J. March 2025;26(1):5-10.