Research Article
BibTex RIS Cite

Doku Mühendisliğinde Diş Dokusundan Türetilmiş Mezenkimal Kök Hücreler

Year 2021, Volume: 7 Issue: 1, 1 - 15, 22.06.2021

Abstract

Doku mühendisliğ, “Mühendislik ve yaşam bilimlerinin ilkelerini, doku işlevini veya bütün bir organı restore eden, koruyan veya geliştiren biyolojik ikamelerin gelişimine uygulayanan disiplinler arası bir alandır.” Doku mühendisliği hücreleri, iskele ve sinyal moleküllerini kullanarak yenilenmiş dokular oluşturur. Mezenkimal kök hücreler, doku mühendisliği uygulamalarında en çok kullanılan popülasyonlar arasındadır. Kök hücre multipotent bir hücre olup, spesifik hücreye çoğalabilir ve farklılaşabilir. Bu hücreler birçok farklı doku tipini oluşturma kapasitesine sahiptir. Kemik iliğinde multipoten mezenkimal kök hücrelerin keşfinden beri, diğer dokulardaki mezenkimal kök hücreler tanımlanmıştır. Diş dokuları, mezenkimal kök hücrelerin izolasyonu için potansiyel bir kaynak olarak kabul edilmiştir. Bugüne kadar, diş dokularından bircok mezenkimal kök hücre izole ve karakterize edilmiştir. Bu makale, mezenkimal kök hücrelerin dental kaynaklarını ve bu dental dokudan türetilmiş mezenkimal kök hücrelerin özelliklerini gözden geçirecektir.

References

  • 1- Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
  • 2- Meyer U. The history of tissue engineering and regenerative medicine in perspective. In: Meyer U, Meyer T, Handschel J, Wiesmann HP, editors. Fundamentals of tissue engineering and regenerative medicine. Springer-Verlag Berlin Heidelberg; 2009. p. 5.
  • 3- Langer, R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc Chem Res, 2000; 33(2): 94-101.
  • 4- Atala, A. Tissue Engineering and Regenerative Medicine: Concepts for Clinical Application, Rejuvenation Res, 2004; 7(1): 15.
  • 5- Mason C, Dunnill P. A brief definition of regenerative medicine. RegenMed 2008; 3(1): 1–5.
  • 6- Fergal J. O’Brien. Biomaterials & scaffolds for tissue engineering. Materialstoday 2011; 14(3): 88-95.
  • 7- Melek LN. Tissue engineering in oral and maxillofacial reconstruction .Tanta Dental Journal 2015; 12; 211-223.
  • 8- Sampognaa G, Gurayab S, Forgione A. Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure 2015; 3: 101–107.
  • 9- Rodríguez-Lozano FJ, Insausti CL, Iniesta F, Blanquer M, Ramírez M.D, et al. Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal. 2012; 17(6): 1062-7.
  • 10- Abou Neel E, et al. Tissue engineering in dentistry. Journal of Dentistry. 2014; 42: 915-928.
  • 11- Silver FH, Pins G. J Long Term Eff Med Implants 1992; 2: 67- 80.
  • 12- Chevallay B, Herbage D. Med Biol Eng Comput 2000; 38: 211-8.
  • 13- Galler KM, D’Souza RN. Tissue engineering approaches for regenerative dentistry. Regen Med. 2011; 6: 111-24.
  • 14- Atala, A. Regenerative medicine strategies, J. Pediatr. Surg. 2012; 47 (1): 17–28.
  • 15- Langer R, Tirrell D.A, Designing materials for biology and medicine, Nature 2004; 428(6982): 487–492.
  • 16- Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration, Biomaterials 2012; 33(27): 6320–6344.
  • 17- Huebsch N, Mooney DJ, Inspiration and application in the evolution of biomaterials, Nature 462 (7272) (2009) 426–432.
  • 18- Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L. Effect of ion substitution on properties of bioactive glasses: a review, Ceram. Int. 41 (6) (2015) 7241–7251.
  • 19- Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique, Surf. Eng. 30 (8) (2014) 545–551.
  • 20- Yazdimamaghani M, Razavi M, Vashaee D, Pothineni VR, Rajadas J, Tayebi L. Significant degradability enhancement in multilayer coating of polycaprolactone polycaprolactonebioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications, Appl. Surf. Sci. 338 (2015) 137–145.
  • 21- Ratner BD, Bryant SJ, Biomaterials: where we have been and where we are going, Annu. Rev. Biomed. Eng. 2004; 6: 41–75.
  • 22- Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue Eng. B Rev. 2008; 14 (2): 149–165.
  • 23- Shabafrooz V, Mozafari M, Köhler GA, et al. The effect of hyaluronic acid on biofunctionality of gelatin–collagen intestine tissue engineering scaffolds, J. Biomed. Mater. Res. Part A 2014; 102 (9): 3130–3139.
  • 24. Scheller EL, Krebsbach PH, Kohn DH. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil. 2009; 36: 368-89.
  • 25- Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011;56:709-21.
  • 26- Nuñez J, Sanz-Blasco S, Vignoletti F, Muñoz F, Caffesse RG, Sanz M, et al. 17beta-estradiol promotes cementoblast proliferation and cementum formation in experimental periodontitis. J Periodontol. 2010;81:1064-74.
  • 27- Peng L, Ye L, Zhou XD. Mesenchymal Stem Cells and Tooth Engineering. International Journal of Oral Science, 2009; 1(1): 6–12.
  • 28- Meirelles Lda S, Nardi NB: Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci 2009; 14: 4281-4298.
  • 29- Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E. Mesenchymal Stem Cells in the Dental Tissues: Perspectives for Tissue Regeneration. Braz Dent J 2011; 22(2): 91-98.
  • 30- Han J, Menicanin D, Gronthos S, Bartold PM. Stem cells, tissue engineering and periodontal regeneration. Australian Dental Journal 2014; 59:(1): 117–130.
  • 31- Olson J, Atala A, Yoo J. Tissue engineering: Current strategies and future directions. Chonnam Med J 2011; 47: 1-13
  • 32- Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.
  • 33- Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292: 154-6.
  • 34- Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-72.
  • 35- Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009; 15: 59-68.
  • 36- Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105: 829–841.
  • 37- Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414: 118–121.
  • 38- Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.
  • 39- Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 2004; 22: 823–831.
  • 40- Liu J, Yu F, Sun Y, Jiang B, Zhang W, et al. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015; 33: 627–638.
  • 41- Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3:393-403.
  • 42- Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991; 9: 641-50.
  • 43- Owen M. Marrow stromal stem cells. J Cell Sci Suppl. 1988; 10: 63-76.
  • 44- Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71-4.
  • 45- Otabe K, Muneta T, Kawashima N, Suda H, Tsuji K, Sekiya I. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties. Cell Medicine, 2012; 4:. 13–21.
  • 46- Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008; 8: 726–736.
  • 47- De Bari C, Dell’accio F. Mesenchymal stem cells in rheumatology: A regenerative approach to joint repair. Clin Sci. 2007; 113: 339–348.
  • 48- Williams JT, Southerland SS, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 1999; 65: 22 26.
  • 49- Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109: 235-242.
  • 50- De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44: 1928-1942.
  • 51- Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98: 2396-2402.
  • 52- Zuk PA, Zhu M, Mizuno, H Huang J, Futrell JW, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7:211-228.
  • 53- Noort WA, Kruisselbrink AB, in't Anker PS, Kruger M, van Bezooijen RL, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood– derived CD341 cells in NOD/SCID mice. Exp Hematol 2002; 30: 870-878.
  • 54- In't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548-1549.
  • 55- Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem celllike property. Exp Cell Res 2003;287:289-300.
  • 56- Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22:1338-1345.
  • 57- Shih DTb, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 2005; 23: 1012-1020.
  • 58- Patki S, Kadam S, Chandra V et al. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell 2010; 23: 35-40.
  • 59- Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8: 315-7.
  • 60- Du L, Yang P, Ge S. Isolation and characterization of human gingiva-derived mesenchymal stem cells using limiting dilution method. Journal of Dental Sciences 2016; 11: 304-314.
  • 61- Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A. 2000: 97(25): 13625–13630.
  • 62- Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth, Proc. Natl. Acad. Sci. U. S. A. 2003; 100(10): 5807–5812.
  • 63- Seo B-M, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-155.
  • 64- Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24 (2): 155-165.
  • 65- Matsubara T, Suardita K, Ishii M, et al. Alveolar bone marrow as a cell source for regenerative medicine: Differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 2005;20:399-409.
  • 66- Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS One 2006; 1: e79.
  • 67- Ikeda E, Yagi K, Kojima M, et al. Multipotent cells from the human third molar: Feasibility of cell-based therapy for liver disease. Differentiation 2008; 76: 495-505.
  • 68- Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 2009; 183(12): 7787-7798.
  • 69- Huang AH, Chen YK, Chan AW, Shieh TY, Lin LM. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod. 2009; 35(5): 673–81.
  • 70- Rajendran R, Gopal S, Masood H, Vivek P, Deb K. Regenerative potential of dental pulp mesenchymal stem cells harvested from high caries patient’s teeth. J Stem Cells. 2013; 8(1): 25-41.
  • 71- Wang Z, Pan J, Wright JT, Bencharit S, Zhang S, Everett ET, Teixeira FB, Preisser JS. Putative stem cells in human dental pulp with irreversible pulpitis: an exploratory study. J Endod. 2010; 36(5): 820-5.
  • 72- Sun HH, Chen B, Zhu QL, Kong H, Li QH, Gao LN, Xiao M, Chen FM, Yu Q. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials. 2014; 35(35): 9459–72.
  • 73- Tamaki Y, Nakahara T, Ishikawa H, Sato S. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow, Odontology 2013; 101 (2): 121–132.
  • 74- Mayo V, Sawatari Y, Huang CY, Garcia-Godoy F. Neural crest-derived dental stem cells—where we are and where we are going, J. Dent. 2014; 42 (9): 1043–1051.
  • 75- Ibarretxe G, Crende O, Aurrekoetxea M, Garcia-Murga V, Etxani J, Unda F. Neural crest stemcells from dental tissues: A new hope for dental and neural regeneration, Stem Cells Int. 2012 (2012) (103503).
  • 76- Vollner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells, Differ. 2009; 77(5): 433–441.
  • 77- Morsczeck C, Vollner F, Saugspier M, Brandl C, Reichert TE, et al. Comparison of human dental follicle cells (DFCs) and stemcells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro, Clin. Oral Investig. 2010; 14(4): 433–440.
  • 78- Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003; 116: 1827-35.
  • 79- Graziano A, d’Aquino R, Laino G, Papaccio G. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 2008; 4: 21-26.
  • 80- Wang J, Wang X, Sun Z, et al. Stem cells from human exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19: 1375-83.
  • 81- Morad G, Kheiri L, Khojasteh A. “Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature,” Archives of Oral Biology, 2013; 58(12): 1818–1827.
  • 82- Bright R, Hynes K, Gronthos S, Bartold PM. “Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review,” Journal of Periodontal Research, 2015; 50(2): 160-72.
  • 83- Murray PE, About I, Franquin JC, Remusat M, Smith AJ. Restorative pulpal and repair responses. J Am Dent Assoc 2001; 132: 482-91.
  • 84- Kawashima N. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration?. archives of oral biology 2012; 57: 1439–1458.
  • 85- Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology and Medicine 2008; 37(9): 571–4.
  • 86- Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, et al. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regenerative Medicine 2010; 5(4): 617–31.
  • 87- Lei M, Li K, Li B, Gao LN, Chen FM, Jin Y. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 2014; 35: 6332-6343.
  • 88- Han YJ, Kang YH, Shivakumar SB, Bharti D, Son YB, et al. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro. Int. J. Med. Sci. 2017; 14(13): 1418-1429.
  • 89- Coppe C, Zhang Y, Den Besten PK. Characterization of primary dental pulp cells in vitro. Pediatr Dent 2009; 319: 467-71.
  • 90- Suchánek J, Visek B, Soukup T, El-Din Mohamed SK, Ivancaková R, et al. Stem cells from human exfoliated deciduous teeth-isolation, long term cultivation and phenotypical analysis. ACTA MEDICA (Hradec Králové) 2010; 53(2): 93–99
  • 91- Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89: 791–796.
  • 92- Nourbakhsh N, Soleimani M, Taghipour Z, Karbalaie K, Mousavi SB, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55: 189–195.
  • 93- Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006; 184: 105–116.
  • 94- Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88: 249–254.
  • 95- Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 2008; 6: 35.
  • 96- Zheng Y, Wang XY, Wang YM, Liu XY, Zhang CM, et al. Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res 2012; 91: 676– 682.
  • 97- Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122: 80–90.
  • 98- Mendonc D¸ Costa A, Bueno DF, Martins MT, Kerkis I, Kerkis A, et al. Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg 2008; 19: 204–210.
  • 99- Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, et al. SHED repair critical-size calvarial defects in immunocompromised mice. Oral Dis 2008; 14: 428–434.
  • 100- Ma L, Makino Y, Yamaza H, et al. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine. PLOS ONE 2012; 7 (12): e51777
  • 101- Yin Z, Wang Q, Li Y, Wei H, Shi J, Li A. A novel method for banking stem cells from human exfoliated deciduous teeth: lentiviral TERT immortalization and phenotypical analysis. Stem Cell Research & Therapy 2016; 7: 50.
  • 102- Govindasamy V, Ronald V.S, Abdullah A.N, Nathan K.R, et al. Differentiation of dental pulp stem cells into islet-like aggregates. J. Dent. Res. 2011; 90: 646–652.
  • 103- Wang X, Sha X.J, Li G.H, Yang F.S, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch. Oral Biol. 2012; 57: 1231–1240.
  • 104- Bhonde RR, Sheshadri P, Sharma S. Kumar A. Making surrogate-cells from mesenchymal stromal cells: Perspectives and future endeavors. Int. J. Biochem. Cell Biol. 2014; 46: 90–102.
  • 105- Kim G, Shin KH, Pae EK. Zinc Up-Regulates Insulin Secretion from Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED). Int. J. Mol. Sci. 2016; 17: 2092.
  • 106- Nyman, S. Gottlow, J. Karring, T. and Lindhe, J.The regenerative potential of the periodontal ligament: An experimental study in the monkey. J. Clin. Periodontol. 1982; 9: 257-265.
  • 107- McCulloch CAG, Bordin, S. Role of fibroblast subpopulations in periodontal physiology and pathology. J. Periodont Res. 1991; 26:144-154.
  • 108- Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-55.
  • 109- Trejo ICG, Ramírez OR, García-Muñoz A, Gómez-Clavel JF. Isolation of periodontal ligament stem cells from extracted premolars. Simplied method. Revista Odontológica Mexicana 2017; 21(1): e12-e20.
  • 110- Trubiani O, Orsini G, Zini N, Di Iorio D, Piccirilli M, Piattelli A, et al. Regenerative potential of human periodontal ligament derived stem cells on three-dimensional biomaterials: a morphological report. J Biomed Mater Res A 2008; 87: 986-993.
  • 111- Park JC, Kim JM, Jung IH, Kim JC, Choi SH, Cho KS, et al. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 2011; 38: 721-31.
  • 112- Iwata T, Yamato M, Zhang Z, Mukobata S, Washio K, Ando T, et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol 2010; 37: 1088-99.
  • 113- Felthaus O, Gosau M, Ettl T, Prantl L and Morsczeck C: Migration of human dental follicle cells in vitro. J Periodontal Res 2014; 49: 205‑212.
  • 114- Vollner F, Driemel O, Reichert T, Morsczeck C. Isolation and characterization of dental follicle precursor cells (DFPCs). J. Stem Cells Regen. Med. 2007; 2: 130.
  • 115- Guo L, Li J, Qiao X, Yu M, Tang W, Wang H, Guo W, Tian W. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One 2013 Apr19 ; 8(4): e62332.
  • 116- Mori, G, Ballini A, Carbone C, Oranger A, Brunetti G, et al. Osteogenic differentiation of dental follicle stem cells. Int. J. Med. Sci. 2012; 9: 480–487.
  • 117- Acil, Y. Yang F, Gulses A, Ayna M, Wiltfang J, Gierloff M. Isolation, characterization and investigation of differentiation potential of human periodontal ligament cells and dental follicle progenitor cells and their response to BMP-7 in vitro. Odontology 2016; 104(2): 123-35.
  • 118- Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, et al. (2002). Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connective Tissue Research, 2002: 43(2-3), 406-408.
  • 119- Völlner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation, 2009; 77 (5): 433–441.
  • 120- Morsczeck CO, Drees J, Gosau M. Lipopolysaccharide from Escherichia coli but not from Porphyromonas gingivalis induce pro-inflammatory cytokines and alkaline phosphatase in dental follicle cells. Arch. Oral Biol. 2012; 57: 1595–1601.
  • 121- Biedermann A, Kriebel K, Kreikemeyer B, Lang H. Interactions of anaerobic bacteria with dental stem cells: an in vitro study. PLoS One 2014; 9: e110616.
  • 122- Liu, J. Wang L, Liu W, Li Q, Jin Z, Jin Y. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS One 2014; 9: e108752.
  • 123- Rezai-Rad M, Bova JF, Orooji M, Pepping J, Qureshi A, Del Piero F, et al. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy, 2015; 17(11): 1572–1581.
  • 124- Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, et al. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol. 2015; 15: 114.
  • 125- Sung IY, Son Hn, Ullah I, et al. Cardiomyogenic differentiation of human dental follicle-derived stem cells by suberoylanilide hydroxamic acid and their in vivo homing property. International Journal of Medical Sciences 2016; 13(11): 841-852.
  • 126- Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol 2000; 24: 9-27.
  • 127- Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, et al. Alveolar bone marrow as a cell source for regenerative medicine: Differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 2005;20:399-409.
  • 128- Wang L, Shen H, Zheng W, Tang L, Yang Z, Gao Y, et al: Characterization of stem cells from alveolar periodontal ligament. Tissue Eng Part A 2011; 17: 1015-1026.
  • 129- Yue JJ, Cavender A, Gay I. Alveolar Bone Stem Cells: An Isolation, Characterization, and Differentiation Approach. Conference Paper, March 2012.
  • 130- Wang YL, Hong, Yen TH, Hong HH. Isolation of mesenchymal stem cells from human alveolar periosteum and effects of vitamin D on osteogenic activity of periosteum-derived cells. Journal of Visualized Experiments. 2018 May 4; 135.
  • 131- Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008; 34: 166-171.
  • 132- Huang GT. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. J. Endodont. 2008; 34: 645–651.
  • 133- Sonoyama W, Seo BM, Yamaza T, Shi S. Human Hertwig’s Epithelial Root Sheath Cells Play Crucial Roles in Cementum Formation. J Dent Res 2007; 86: 594-9.
  • 134- Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS ONE 2006; Issue 1: e79.
  • 135- Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Engineering Part A 2010; 16(2): 605–15.
  • 136- Chen K, Xiong H, Huang Y, Liu C. Comparative analysis of in vitro periodontal characteristics of stem cells from apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). archives of oral biology 2013; 58: 997–1006.
  • 137- Chandki R, Kala M, Banthia P, Banthia R. From Stem to Roots: Tissue Engineering in Endodontics. Journal of Clinical and Experimental Dentistry, 2012; 4: e66-e71.
  • 138- Bansal R, Jain A. Current Overview on Dental Stem Cells Applications in Regenerative Dentistry. Journal of Natural Science , Biology and Medicine 2015; 6: 29- 34.
  • 139- Yagyuu T, Ikeda E, Ohgushi H, et al. Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. archives of oral biology 2010; 55: 68-76.
  • 140- Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 2005; 84: 390-406.
  • 141- Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U, et al. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: Implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics Journal, 2010; 10: 105–113.
  • 142- Ercala P, Pekozer G, Gumru O, et al. Influence of STRO-1 selection on osteogenic potential of human tooth germ derived mesenchymal stem cells. Archives of Oral Biology 2017; 82 : 293-301.
  • 143- Tomar GB, Srivastava RK, Gupta N, et al. Human gingivaderived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 2010; 393:377-83.
  • 144- Irwin CR, Picardo M, Ellis I, Sloan P, Grey A, McGurk M, Schor SL. Inter- and intra-site heterogeneity in the expression of fetal-like phenotypic characteristics by gingival fibroblasts: potential significance for wound healing. J. Cell Sci 1994; 107: 1333–1346.
  • 145- Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW. Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br. J. Dermatol 2001; 144: 229–237.
  • 146- Novak N, Haberstock J, Bieber T, Allam JP. The immune privilege of the oral mucosa. Trends Mol. Med 2008; 14: 191–198.
  • 147- Jin SH, Lee JE, Yun J-H, Kim I, Ko Y, Park JB. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J Periodont Res 2015; 50: 461–467.
  • 148- Yang H, Gao LN, An Y, Hu CH, Jin F, Zhou J, Jin Y, Chen FM. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 2013; 34: 7033-7047.
  • 149- Jauregui C, Yoganarasimha S, Madurantakam P. Mesenchymal Stem Cells Derived from Healthy and Diseased Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds. Bioengineering 2018; 5: 8.
  • 150- Ge S, Mrozik KM, Menicanin D, Gronthos S, Bartold PM. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: Potential use for clinical therapy. Regen. Med. 2012; 7: 819–832.
  • 151- Mitrano TI, Grob MS, Carrio´n F, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol 2010; 81: 917-25.

Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering

Year 2021, Volume: 7 Issue: 1, 1 - 15, 22.06.2021

Abstract

Tissue engineering (TE) is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue or organ function. TE provides newly regenerated tissues by the appliance of cells, scaffold, and signaling molecules. In tissue engineering applications, mesenchymal stem cells are among the most-used populations. The stem cell is a multipotent cell, which can proliferate and differentiate to a specific cell. These cells can form many different tissue types. Since the discovery and characterization of multipotent mesenchymal stem cells (MSCs) from bone marrow (BM), MSC-like populations from other tissues have now been characterized based on the ‘gold standard’ criteria established for BMMSCs. Dental issues have been considered as a potential source for the isolation of MSC-like populations. To date, many unique populations of dental tissue-derived MSCs have been isolated and characterized. This article will review the current dental sources of MSCs, and the properties of these dental tissue-derived MSCs.

References

  • 1- Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
  • 2- Meyer U. The history of tissue engineering and regenerative medicine in perspective. In: Meyer U, Meyer T, Handschel J, Wiesmann HP, editors. Fundamentals of tissue engineering and regenerative medicine. Springer-Verlag Berlin Heidelberg; 2009. p. 5.
  • 3- Langer, R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc Chem Res, 2000; 33(2): 94-101.
  • 4- Atala, A. Tissue Engineering and Regenerative Medicine: Concepts for Clinical Application, Rejuvenation Res, 2004; 7(1): 15.
  • 5- Mason C, Dunnill P. A brief definition of regenerative medicine. RegenMed 2008; 3(1): 1–5.
  • 6- Fergal J. O’Brien. Biomaterials & scaffolds for tissue engineering. Materialstoday 2011; 14(3): 88-95.
  • 7- Melek LN. Tissue engineering in oral and maxillofacial reconstruction .Tanta Dental Journal 2015; 12; 211-223.
  • 8- Sampognaa G, Gurayab S, Forgione A. Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure 2015; 3: 101–107.
  • 9- Rodríguez-Lozano FJ, Insausti CL, Iniesta F, Blanquer M, Ramírez M.D, et al. Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal. 2012; 17(6): 1062-7.
  • 10- Abou Neel E, et al. Tissue engineering in dentistry. Journal of Dentistry. 2014; 42: 915-928.
  • 11- Silver FH, Pins G. J Long Term Eff Med Implants 1992; 2: 67- 80.
  • 12- Chevallay B, Herbage D. Med Biol Eng Comput 2000; 38: 211-8.
  • 13- Galler KM, D’Souza RN. Tissue engineering approaches for regenerative dentistry. Regen Med. 2011; 6: 111-24.
  • 14- Atala, A. Regenerative medicine strategies, J. Pediatr. Surg. 2012; 47 (1): 17–28.
  • 15- Langer R, Tirrell D.A, Designing materials for biology and medicine, Nature 2004; 428(6982): 487–492.
  • 16- Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration, Biomaterials 2012; 33(27): 6320–6344.
  • 17- Huebsch N, Mooney DJ, Inspiration and application in the evolution of biomaterials, Nature 462 (7272) (2009) 426–432.
  • 18- Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L. Effect of ion substitution on properties of bioactive glasses: a review, Ceram. Int. 41 (6) (2015) 7241–7251.
  • 19- Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique, Surf. Eng. 30 (8) (2014) 545–551.
  • 20- Yazdimamaghani M, Razavi M, Vashaee D, Pothineni VR, Rajadas J, Tayebi L. Significant degradability enhancement in multilayer coating of polycaprolactone polycaprolactonebioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications, Appl. Surf. Sci. 338 (2015) 137–145.
  • 21- Ratner BD, Bryant SJ, Biomaterials: where we have been and where we are going, Annu. Rev. Biomed. Eng. 2004; 6: 41–75.
  • 22- Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue Eng. B Rev. 2008; 14 (2): 149–165.
  • 23- Shabafrooz V, Mozafari M, Köhler GA, et al. The effect of hyaluronic acid on biofunctionality of gelatin–collagen intestine tissue engineering scaffolds, J. Biomed. Mater. Res. Part A 2014; 102 (9): 3130–3139.
  • 24. Scheller EL, Krebsbach PH, Kohn DH. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil. 2009; 36: 368-89.
  • 25- Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011;56:709-21.
  • 26- Nuñez J, Sanz-Blasco S, Vignoletti F, Muñoz F, Caffesse RG, Sanz M, et al. 17beta-estradiol promotes cementoblast proliferation and cementum formation in experimental periodontitis. J Periodontol. 2010;81:1064-74.
  • 27- Peng L, Ye L, Zhou XD. Mesenchymal Stem Cells and Tooth Engineering. International Journal of Oral Science, 2009; 1(1): 6–12.
  • 28- Meirelles Lda S, Nardi NB: Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci 2009; 14: 4281-4298.
  • 29- Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E. Mesenchymal Stem Cells in the Dental Tissues: Perspectives for Tissue Regeneration. Braz Dent J 2011; 22(2): 91-98.
  • 30- Han J, Menicanin D, Gronthos S, Bartold PM. Stem cells, tissue engineering and periodontal regeneration. Australian Dental Journal 2014; 59:(1): 117–130.
  • 31- Olson J, Atala A, Yoo J. Tissue engineering: Current strategies and future directions. Chonnam Med J 2011; 47: 1-13
  • 32- Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.
  • 33- Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292: 154-6.
  • 34- Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-72.
  • 35- Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med. 2009; 15: 59-68.
  • 36- Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105: 829–841.
  • 37- Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414: 118–121.
  • 38- Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.
  • 39- Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 2004; 22: 823–831.
  • 40- Liu J, Yu F, Sun Y, Jiang B, Zhang W, et al. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015; 33: 627–638.
  • 41- Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970; 3:393-403.
  • 42- Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991; 9: 641-50.
  • 43- Owen M. Marrow stromal stem cells. J Cell Sci Suppl. 1988; 10: 63-76.
  • 44- Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71-4.
  • 45- Otabe K, Muneta T, Kawashima N, Suda H, Tsuji K, Sekiya I. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties. Cell Medicine, 2012; 4:. 13–21.
  • 46- Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008; 8: 726–736.
  • 47- De Bari C, Dell’accio F. Mesenchymal stem cells in rheumatology: A regenerative approach to joint repair. Clin Sci. 2007; 113: 339–348.
  • 48- Williams JT, Southerland SS, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 1999; 65: 22 26.
  • 49- Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109: 235-242.
  • 50- De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44: 1928-1942.
  • 51- Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98: 2396-2402.
  • 52- Zuk PA, Zhu M, Mizuno, H Huang J, Futrell JW, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7:211-228.
  • 53- Noort WA, Kruisselbrink AB, in't Anker PS, Kruger M, van Bezooijen RL, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood– derived CD341 cells in NOD/SCID mice. Exp Hematol 2002; 30: 870-878.
  • 54- In't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548-1549.
  • 55- Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem celllike property. Exp Cell Res 2003;287:289-300.
  • 56- Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22:1338-1345.
  • 57- Shih DTb, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 2005; 23: 1012-1020.
  • 58- Patki S, Kadam S, Chandra V et al. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell 2010; 23: 35-40.
  • 59- Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8: 315-7.
  • 60- Du L, Yang P, Ge S. Isolation and characterization of human gingiva-derived mesenchymal stem cells using limiting dilution method. Journal of Dental Sciences 2016; 11: 304-314.
  • 61- Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A. 2000: 97(25): 13625–13630.
  • 62- Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth, Proc. Natl. Acad. Sci. U. S. A. 2003; 100(10): 5807–5812.
  • 63- Seo B-M, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-155.
  • 64- Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24 (2): 155-165.
  • 65- Matsubara T, Suardita K, Ishii M, et al. Alveolar bone marrow as a cell source for regenerative medicine: Differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 2005;20:399-409.
  • 66- Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS One 2006; 1: e79.
  • 67- Ikeda E, Yagi K, Kojima M, et al. Multipotent cells from the human third molar: Feasibility of cell-based therapy for liver disease. Differentiation 2008; 76: 495-505.
  • 68- Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 2009; 183(12): 7787-7798.
  • 69- Huang AH, Chen YK, Chan AW, Shieh TY, Lin LM. Isolation and characterization of human dental pulp stem/stromal cells from nonextracted crown-fractured teeth requiring root canal therapy. J Endod. 2009; 35(5): 673–81.
  • 70- Rajendran R, Gopal S, Masood H, Vivek P, Deb K. Regenerative potential of dental pulp mesenchymal stem cells harvested from high caries patient’s teeth. J Stem Cells. 2013; 8(1): 25-41.
  • 71- Wang Z, Pan J, Wright JT, Bencharit S, Zhang S, Everett ET, Teixeira FB, Preisser JS. Putative stem cells in human dental pulp with irreversible pulpitis: an exploratory study. J Endod. 2010; 36(5): 820-5.
  • 72- Sun HH, Chen B, Zhu QL, Kong H, Li QH, Gao LN, Xiao M, Chen FM, Yu Q. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials. 2014; 35(35): 9459–72.
  • 73- Tamaki Y, Nakahara T, Ishikawa H, Sato S. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow, Odontology 2013; 101 (2): 121–132.
  • 74- Mayo V, Sawatari Y, Huang CY, Garcia-Godoy F. Neural crest-derived dental stem cells—where we are and where we are going, J. Dent. 2014; 42 (9): 1043–1051.
  • 75- Ibarretxe G, Crende O, Aurrekoetxea M, Garcia-Murga V, Etxani J, Unda F. Neural crest stemcells from dental tissues: A new hope for dental and neural regeneration, Stem Cells Int. 2012 (2012) (103503).
  • 76- Vollner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells, Differ. 2009; 77(5): 433–441.
  • 77- Morsczeck C, Vollner F, Saugspier M, Brandl C, Reichert TE, et al. Comparison of human dental follicle cells (DFCs) and stemcells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro, Clin. Oral Investig. 2010; 14(4): 433–440.
  • 78- Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003; 116: 1827-35.
  • 79- Graziano A, d’Aquino R, Laino G, Papaccio G. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 2008; 4: 21-26.
  • 80- Wang J, Wang X, Sun Z, et al. Stem cells from human exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19: 1375-83.
  • 81- Morad G, Kheiri L, Khojasteh A. “Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature,” Archives of Oral Biology, 2013; 58(12): 1818–1827.
  • 82- Bright R, Hynes K, Gronthos S, Bartold PM. “Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review,” Journal of Periodontal Research, 2015; 50(2): 160-72.
  • 83- Murray PE, About I, Franquin JC, Remusat M, Smith AJ. Restorative pulpal and repair responses. J Am Dent Assoc 2001; 132: 482-91.
  • 84- Kawashima N. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration?. archives of oral biology 2012; 57: 1439–1458.
  • 85- Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology and Medicine 2008; 37(9): 571–4.
  • 86- Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, et al. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regenerative Medicine 2010; 5(4): 617–31.
  • 87- Lei M, Li K, Li B, Gao LN, Chen FM, Jin Y. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials 2014; 35: 6332-6343.
  • 88- Han YJ, Kang YH, Shivakumar SB, Bharti D, Son YB, et al. Stem Cells from Cryopreserved Human Dental Pulp Tissues Sequentially Differentiate into Definitive Endoderm and Hepatocyte-Like Cells in vitro. Int. J. Med. Sci. 2017; 14(13): 1418-1429.
  • 89- Coppe C, Zhang Y, Den Besten PK. Characterization of primary dental pulp cells in vitro. Pediatr Dent 2009; 319: 467-71.
  • 90- Suchánek J, Visek B, Soukup T, El-Din Mohamed SK, Ivancaková R, et al. Stem cells from human exfoliated deciduous teeth-isolation, long term cultivation and phenotypical analysis. ACTA MEDICA (Hradec Králové) 2010; 53(2): 93–99
  • 91- Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89: 791–796.
  • 92- Nourbakhsh N, Soleimani M, Taghipour Z, Karbalaie K, Mousavi SB, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55: 189–195.
  • 93- Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006; 184: 105–116.
  • 94- Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, et al. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res 2009; 88: 249–254.
  • 95- Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 2008; 6: 35.
  • 96- Zheng Y, Wang XY, Wang YM, Liu XY, Zhang CM, et al. Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res 2012; 91: 676– 682.
  • 97- Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122: 80–90.
  • 98- Mendonc D¸ Costa A, Bueno DF, Martins MT, Kerkis I, Kerkis A, et al. Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg 2008; 19: 204–210.
  • 99- Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, et al. SHED repair critical-size calvarial defects in immunocompromised mice. Oral Dis 2008; 14: 428–434.
  • 100- Ma L, Makino Y, Yamaza H, et al. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine. PLOS ONE 2012; 7 (12): e51777
  • 101- Yin Z, Wang Q, Li Y, Wei H, Shi J, Li A. A novel method for banking stem cells from human exfoliated deciduous teeth: lentiviral TERT immortalization and phenotypical analysis. Stem Cell Research & Therapy 2016; 7: 50.
  • 102- Govindasamy V, Ronald V.S, Abdullah A.N, Nathan K.R, et al. Differentiation of dental pulp stem cells into islet-like aggregates. J. Dent. Res. 2011; 90: 646–652.
  • 103- Wang X, Sha X.J, Li G.H, Yang F.S, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch. Oral Biol. 2012; 57: 1231–1240.
  • 104- Bhonde RR, Sheshadri P, Sharma S. Kumar A. Making surrogate-cells from mesenchymal stromal cells: Perspectives and future endeavors. Int. J. Biochem. Cell Biol. 2014; 46: 90–102.
  • 105- Kim G, Shin KH, Pae EK. Zinc Up-Regulates Insulin Secretion from Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED). Int. J. Mol. Sci. 2016; 17: 2092.
  • 106- Nyman, S. Gottlow, J. Karring, T. and Lindhe, J.The regenerative potential of the periodontal ligament: An experimental study in the monkey. J. Clin. Periodontol. 1982; 9: 257-265.
  • 107- McCulloch CAG, Bordin, S. Role of fibroblast subpopulations in periodontal physiology and pathology. J. Periodont Res. 1991; 26:144-154.
  • 108- Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-55.
  • 109- Trejo ICG, Ramírez OR, García-Muñoz A, Gómez-Clavel JF. Isolation of periodontal ligament stem cells from extracted premolars. Simplied method. Revista Odontológica Mexicana 2017; 21(1): e12-e20.
  • 110- Trubiani O, Orsini G, Zini N, Di Iorio D, Piccirilli M, Piattelli A, et al. Regenerative potential of human periodontal ligament derived stem cells on three-dimensional biomaterials: a morphological report. J Biomed Mater Res A 2008; 87: 986-993.
  • 111- Park JC, Kim JM, Jung IH, Kim JC, Choi SH, Cho KS, et al. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 2011; 38: 721-31.
  • 112- Iwata T, Yamato M, Zhang Z, Mukobata S, Washio K, Ando T, et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol 2010; 37: 1088-99.
  • 113- Felthaus O, Gosau M, Ettl T, Prantl L and Morsczeck C: Migration of human dental follicle cells in vitro. J Periodontal Res 2014; 49: 205‑212.
  • 114- Vollner F, Driemel O, Reichert T, Morsczeck C. Isolation and characterization of dental follicle precursor cells (DFPCs). J. Stem Cells Regen. Med. 2007; 2: 130.
  • 115- Guo L, Li J, Qiao X, Yu M, Tang W, Wang H, Guo W, Tian W. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. PLoS One 2013 Apr19 ; 8(4): e62332.
  • 116- Mori, G, Ballini A, Carbone C, Oranger A, Brunetti G, et al. Osteogenic differentiation of dental follicle stem cells. Int. J. Med. Sci. 2012; 9: 480–487.
  • 117- Acil, Y. Yang F, Gulses A, Ayna M, Wiltfang J, Gierloff M. Isolation, characterization and investigation of differentiation potential of human periodontal ligament cells and dental follicle progenitor cells and their response to BMP-7 in vitro. Odontology 2016; 104(2): 123-35.
  • 118- Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, et al. (2002). Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connective Tissue Research, 2002: 43(2-3), 406-408.
  • 119- Völlner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation, 2009; 77 (5): 433–441.
  • 120- Morsczeck CO, Drees J, Gosau M. Lipopolysaccharide from Escherichia coli but not from Porphyromonas gingivalis induce pro-inflammatory cytokines and alkaline phosphatase in dental follicle cells. Arch. Oral Biol. 2012; 57: 1595–1601.
  • 121- Biedermann A, Kriebel K, Kreikemeyer B, Lang H. Interactions of anaerobic bacteria with dental stem cells: an in vitro study. PLoS One 2014; 9: e110616.
  • 122- Liu, J. Wang L, Liu W, Li Q, Jin Z, Jin Y. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS One 2014; 9: e108752.
  • 123- Rezai-Rad M, Bova JF, Orooji M, Pepping J, Qureshi A, Del Piero F, et al. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy, 2015; 17(11): 1572–1581.
  • 124- Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, et al. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol. 2015; 15: 114.
  • 125- Sung IY, Son Hn, Ullah I, et al. Cardiomyogenic differentiation of human dental follicle-derived stem cells by suberoylanilide hydroxamic acid and their in vivo homing property. International Journal of Medical Sciences 2016; 13(11): 841-852.
  • 126- Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol 2000; 24: 9-27.
  • 127- Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, et al. Alveolar bone marrow as a cell source for regenerative medicine: Differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 2005;20:399-409.
  • 128- Wang L, Shen H, Zheng W, Tang L, Yang Z, Gao Y, et al: Characterization of stem cells from alveolar periodontal ligament. Tissue Eng Part A 2011; 17: 1015-1026.
  • 129- Yue JJ, Cavender A, Gay I. Alveolar Bone Stem Cells: An Isolation, Characterization, and Differentiation Approach. Conference Paper, March 2012.
  • 130- Wang YL, Hong, Yen TH, Hong HH. Isolation of mesenchymal stem cells from human alveolar periosteum and effects of vitamin D on osteogenic activity of periosteum-derived cells. Journal of Visualized Experiments. 2018 May 4; 135.
  • 131- Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008; 34: 166-171.
  • 132- Huang GT. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. J. Endodont. 2008; 34: 645–651.
  • 133- Sonoyama W, Seo BM, Yamaza T, Shi S. Human Hertwig’s Epithelial Root Sheath Cells Play Crucial Roles in Cementum Formation. J Dent Res 2007; 86: 594-9.
  • 134- Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PloS ONE 2006; Issue 1: e79.
  • 135- Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Engineering Part A 2010; 16(2): 605–15.
  • 136- Chen K, Xiong H, Huang Y, Liu C. Comparative analysis of in vitro periodontal characteristics of stem cells from apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). archives of oral biology 2013; 58: 997–1006.
  • 137- Chandki R, Kala M, Banthia P, Banthia R. From Stem to Roots: Tissue Engineering in Endodontics. Journal of Clinical and Experimental Dentistry, 2012; 4: e66-e71.
  • 138- Bansal R, Jain A. Current Overview on Dental Stem Cells Applications in Regenerative Dentistry. Journal of Natural Science , Biology and Medicine 2015; 6: 29- 34.
  • 139- Yagyuu T, Ikeda E, Ohgushi H, et al. Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. archives of oral biology 2010; 55: 68-76.
  • 140- Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 2005; 84: 390-406.
  • 141- Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U, et al. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: Implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics Journal, 2010; 10: 105–113.
  • 142- Ercala P, Pekozer G, Gumru O, et al. Influence of STRO-1 selection on osteogenic potential of human tooth germ derived mesenchymal stem cells. Archives of Oral Biology 2017; 82 : 293-301.
  • 143- Tomar GB, Srivastava RK, Gupta N, et al. Human gingivaderived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun 2010; 393:377-83.
  • 144- Irwin CR, Picardo M, Ellis I, Sloan P, Grey A, McGurk M, Schor SL. Inter- and intra-site heterogeneity in the expression of fetal-like phenotypic characteristics by gingival fibroblasts: potential significance for wound healing. J. Cell Sci 1994; 107: 1333–1346.
  • 145- Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW. Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br. J. Dermatol 2001; 144: 229–237.
  • 146- Novak N, Haberstock J, Bieber T, Allam JP. The immune privilege of the oral mucosa. Trends Mol. Med 2008; 14: 191–198.
  • 147- Jin SH, Lee JE, Yun J-H, Kim I, Ko Y, Park JB. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J Periodont Res 2015; 50: 461–467.
  • 148- Yang H, Gao LN, An Y, Hu CH, Jin F, Zhou J, Jin Y, Chen FM. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 2013; 34: 7033-7047.
  • 149- Jauregui C, Yoganarasimha S, Madurantakam P. Mesenchymal Stem Cells Derived from Healthy and Diseased Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds. Bioengineering 2018; 5: 8.
  • 150- Ge S, Mrozik KM, Menicanin D, Gronthos S, Bartold PM. Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: Potential use for clinical therapy. Regen. Med. 2012; 7: 819–832.
  • 151- Mitrano TI, Grob MS, Carrio´n F, et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol 2010; 81: 917-25.
There are 151 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Collection
Authors

Abdulkareem Almarrawı This is me 0000-0002-9163-6973

Publication Date June 22, 2021
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Almarrawı, A. (2021). Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi), 7(1), 1-15.
AMA Almarrawı A. Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering. J Int Dent Sci. June 2021;7(1):1-15.
Chicago Almarrawı, Abdulkareem. “Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 7, no. 1 (June 2021): 1-15.
EndNote Almarrawı A (June 1, 2021) Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 7 1 1–15.
IEEE A. Almarrawı, “Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering”, J Int Dent Sci, vol. 7, no. 1, pp. 1–15, 2021.
ISNAD Almarrawı, Abdulkareem. “Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 7/1 (June 2021), 1-15.
JAMA Almarrawı A. Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering. J Int Dent Sci. 2021;7:1–15.
MLA Almarrawı, Abdulkareem. “Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi), vol. 7, no. 1, 2021, pp. 1-15.
Vancouver Almarrawı A. Dental Tissue-Derived Mesenchymal Stem Cells in Tissue Engineering. J Int Dent Sci. 2021;7(1):1-15.

It is aimed that the Journal of International Dentistry Sciences be included in the Ulakbim TR Dizin. Necessary preparations are continuing for the issues to be published in 2020 in the TR Dizin.