Review
BibTex RIS Cite

Three-dimensionally Printed Acrylic Resins and Nanoparticle Addition

Year 2024, Volume: 10 Issue: 3, 126 - 136, 31.12.2024
https://doi.org/10.21306/dishekimligi.1504645

Abstract

As part of the latest developments in the field of health, nanotechnology aims to develop and produce materials at the atomic and molecular level and offers biomaterials with superior properties. Although conventional polymethylmethacrylate (PMMA) is frequently used in dental applications and in the production of denture bases, the use of three-dimensional (3D) printing technology and resins has become more widespread in recent years. It is anticipated that these technological advances will significantly contribute to the development of material science in the field of dentistry and provide patients with more durable, aesthetic, and functional dental restoration options. The issue of improving the mechanical and physical properties by adding nanoparticles to acrylic- based materials and 3D printer resins used in prosthetic dentistry has been frequently researched in the literature in recent years. It is observed that nanoparticles, especially metal nanoparticles like titanium dioxide, silver, and zirconium, can contribute to the development of materials used in prosthetic dentistry by providing mechanical advantages. In this review the use of nanotechnology and 3D printing technology in dental practices as well as the nanoparticles such as titanium dioxide, silver, zinc oxide, silicon oxide and zirconium dioxide and the effect of adding these nanoparticles to acrylic resins produced in 3D printer on the physical and mechanical properties of the materials are explained.

References

  • 1. Pourhajibagher M, Salehi Vaziri A, Takzaree N, Ghorbanzadeh R. Physico-mechanical and antimicrobial properties of an orthodontic adhesive containing cationic curcumin doped zinc oxide nanoparticles subjected to photodynamic therapy. Photodiagnosis Photodyn Ther. 2019;25:239-46.
  • 2. Zafar MS. Prosthodontic applications of polymethyl methacrylate PMMA. Polymers (Basel). 2020;12(10):2299.
  • 3. Ulusoy M, AK A. Diş hekimliğinde hareketli bölümlü protezler. 3. bs. C. 1. Ankara: Ankara Üniversitesi Dişhekimliği Fakültesi Yayınları; 2003. 10-16.
  • 4. Kantar K. Kopolimer yapıda hazırlanan akrilik rezinlerin termal ve reolojik özelliklerinin dinamik mekanik analiz (DMA) ile incelenmesi. Doktora Tezi, Ankara Üniversitesi Saglık Bilimleri Enstitüsü; 2005.
  • 5. O’Brien WJ. Denture Base Polymers. In: Dental materials and their selection.3rd ed. O’Brien WJ. Editör. Quinttessence Publication Comp.USA.2002: 377-421.
  • 6. Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent. 2004;91(3):274-80.
  • 7. Jagger DC, Harrison A. The effect of chopped poly(methyl methacrylate) fibers on some properties of acrylic resin denture base material. Int J Prosthodont. 1999;12(6):542-6.
  • 8. Revilla‐León M, Özcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont. 2019;28(2):146-58.
  • 9. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials. 2016;32(1):54-64.
  • 10. Revilla‐León M, Özcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont. 2019;28(2):146-58.
  • 11. Tian Y, Chen CX, Xu X, Wang J, Hou X, Li K, vd. A Review of 3D printing in dentistry: technologies, affecting factors, and applications. Scanning. 2021;2021:1-19.
  • 12. Mubaraki MQ, Moaleem MM Al, Alzahrani AH, Shariff M, Alqahtani SM, Porwal A, vd. Assessment of Conventionally and Digitally Fabricated Complete Dentures: A Comprehensive Review. Materials. 2022;15(11):3868.
  • 13. Alshamrani AA, Raju R, Ellakwa A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. Biomed Res Int. 2022;2022:1-9.
  • 14. Schweiger J, Edelhoff D, Güth JF. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J Clin Med. 2021;10(9):2010.
  • 15. Nayar S, Bhuminathan S, Bhat W. Rapid prototyping and stereolithography in dentistry. J Pharm Bioallied Sci. 2015;7(5):216.
  • 16. Yavuz E, Yılmaz S. Diş hekimliğinde Yeni ve Hızla İlerleyen Üretim Teknolojisi: 3 Boyutlu Yazıcılar. Akdeniz Med J. 2021;7(2):197-205.
  • 17. Aral M, Keskin Y. Diş Hekimliğinde 3 Boyutlu - Eklemeli Üretim: Derleme. Journal of International Dental Sciences. 2024;10(1):1-11.
  • 18. Methani MM, Revilla‐León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all‐ceramic crowns: A review. J Esthet Restor Dent . 2020;32(2):182-92.
  • 19. Lee D, Lee S, Kim H, Park C. A Hybrid Dental Model Concept Utilizing Fused Deposition Modeling and Digital Light Processing 3D Printing. Int J Prosthodont. 2020;33(2):229-31.
  • 20. Pragana JPM, Sampaio RFV, Bragança IMF, Silva CMA, Martins PAF. Hybrid metal additive manufacturing: A state–of–the-art review. Advances in Industrial and Manufacturing Engineering. 2021;2:100032.
  • 21. Demiralp E, Doğru G, Ylmaz H. Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry. Clinical and Experimental Health Sciences. 2021;11(1):182-90.
  • 22. Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res. 2019;9(3):179-85.
  • 23. Rezaie F, Farshbaf M, Dahri M, Masjedi M, Maleki R, Amini F, vd. 3D Printing of Dental Prostheses: Current and Emerging Applications. J Compos Sci. 2023;7(2):80.
  • 24. Fiedor P, Ortyl J. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. Materials. 2020;13(13):29-51.
  • 25. Kessler A, Hickel R, Reymus M. 3D Printing in Dentistry-State of the Art. Oper Dent. 2020;45(1):30-40.
  • 26. Gibson I, Rosen D, Stucker B, Khorasani M, Rosen D, Stucker B, vd. Additive manufacturing technologies. 3. bs. Switzerland: Springer; 2021.
  • 27. Crafts TD, Ellsperman SE, Wannemuehler TJ, Bellicchi TD, Shipchandler TZ, Mantravadi A V. Three-Dimensional Printing and Its Applications in Otorhinolaryngology–Head and Neck Surgery. Otolaryngol Head Neck Surg. 2016;156(6):999-1010.
  • 28. Harada Y, Ishida Y, Miura D, Watanabe S, Aoki H, Miyasaka T, vd. Mechanical Properties of Selective Laser Sintering Pure Titanium and Ti-6Al-4V, and Its Anisotropy. Materials. 2020;13(22):5081.
  • 29. Mangano C, Mangano FG, Shibli JA, Roth LA, D’ Addazio G, Piattelli A, vd. Immunohistochemical Evaluation of Peri-Implant Soft Tissues around Machined and Direct Metal Laser Sintered (DMLS) Healing Abutments in Humans. Int J Environ Res Public Health. 2018;15(8):1611.
  • 30. Svetlizky D, Das M, Zheng B, Vyatskikh AL, Bose S, Bandyopadhyay A, vd. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today. 2021;49:271-95.
  • 31. Abioye TE, Medrano-Tellez A, Farayibi PK, Oke PK. Laser metal deposition of multi-track walls of 308LSi stainless steel. Materials and Manufacturing Processes. 2017;32(14):1660-6.
  • 32. Rajora A, Kumar R, Singh R, Sharma S, Kapoor S, Mishra A. 3D Printing: A Review On The Transformation Of Additive Manufacturing. Mater Today Proc. 2022;35-47.
  • 33. Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res. 2019;9(3):179-85.
  • 34. Cooper LF. The Current and Future Treatment of Edentulism. J Prosthodont. 2009;18(2):116-22.
  • 35. Al-Rafee M. The epidemiology of edentulism and the associated factors: A literature Review. J Family Med Prim Care. 2020;9(4):1841.
  • 36. Lee DJ, Saponaro PC. Management of Edentulous Patients. Dent Clin North Am. 2019;63(2):249-61.
  • 37. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-5.
  • 38. Wu L, Zhao L, Jian M, Mao Y, Yu M, Guo X. EHMP-DLP: multi-projector DLP with energy homogenization for large-size 3D printing. Rapid Prototyp J. 2018;24(9):1500-10.
  • 39. Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent. 2016;116(2):249-56.
  • 40. Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J Prosthodont. 2020;29(6):524-8.
  • 41. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO 2 nanoparticles inclusion for stereolitographic complete denture manufacturing − the fututre in dental care for elderly edentulous patients? J Dent. 2017;59:68-77.
  • 42. Jieun L. Impact Strength of 3D Printed and Conventional Heat-Cured and Cold-Cured Denture Base Acrylics. The University of Texas School of Dentistry at Houston; 2020;  27999468.
  • 43. Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al-Thobity AM, Khan SQ, vd. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J Prosthodont. 2022;31(5):412-8.
  • 44. Freitas RA. Nanodentistry. J Am Dent Assoc. 2000;131(11):1559-65.
  • 45. Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, vd. TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films. 2003;433(1-2):186-90.
  • 46. Sodagar A, Akhoundi MSA, Bahador A, Jalali YF, Behzadi Z, Elhaminejad F, vd. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dental Press J Orthod. 2017;22(5):67-74.
  • 47. Agnihotri R, Gaur S, Albin S. Nanometals in Dentistry: Applications and Toxicological Implications-A Systematic Review. Biol Trace Elem Res. 2020;197(1):70-88.
  • 48. Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J Oral Biol Craniofac Res. 2018;8(1):58-67.
  • 49. Xu K, Li Y, Hu J, Li F, Tian J, Xue B, vd. Effect of titanium dioxide nanoparticles on Silkworm’s innate immunity and resistance to Bacillus bombyseptieus. Sci Adv Mater. 2016;8(8):1512-22.
  • 50. Pant HR, Pandeya DR, Nam KT, Baek W il, Hong ST, Kim HY. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazardous Materials. 2011;189(1-2):465-71.
  • 51. Reijnders L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab. 2009;94(5):873-6.
  • 52. Sodagar A, Bahador A, Khalil S, Saffar Shahroudi A, Zaman Kassaee M. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res. 2013;57(1):15-9.
  • 53. Alrahlah A, Fouad H, Hashem M, Niazy AA, AlBadah A. Titanium Oxide (TiO2) /Polymethylmethacrylate (PMMA) Denture Base Nanocomposites: Mechanical, Viscoelastic and Antibacterial Behavior. Materials. 2018;11(7):1096.
  • 54. Aktitiz İ, Aydın K, Topcu A. Characterization of TiO2 nanoparticle–reinforced polymer nanocomposite materials printed by stereolithography method. J Mater Eng Perform. 2021;30(7):4975-80.
  • 55. Aktitiz I, Varol R, Akkurt N, Saraç MF. In-situ synthesis of 3D printable mono- and Bi-metallic (Cu/Ag) nanoparticles embedded polymeric structures with enhanced electromechanical properties. Polym Test. 2020;90:106724.
  • 56. Alghamdi MA, Fouda SM, Taymour N, Akhtar S, Khan SQ, Ali MS, vd. Comparative Evaluation of TiO2 Nanoparticle Addition and Postcuring Time on the Flexural Properties and Hardness of Additively Fabricated Denture Base Resins. Nanomaterials. 2023;13(23):3061.
  • 57. Liu Y, Chen J, Ning L, Sun J, Liu L, Zhao K. Preparation and properties of nano-TiO2-modified photosensitive materials for 3D printing. E-Polymers. 2022;22(1):686-95.
  • 58. Ju SP, Chen HY, Shih CW. Investigating mechanical properties of polymethylmethacrylate/silver nanoparticle composites by molecular dynamics simulation. Journal of Nanoparticle Research. 2018;20(1):1-17.
  • 59. Hamedi-Rad F, Ghaffari T, Rezaii F, Ramazani A. Effect of Nanosilver on Thermal and Mechanical Properties of Acrylic Base Complete Dentures. J Dent (Tehran). 2014;11(5):495.
  • 60. Aati S, Aneja S, Kassar M, Leung R, Nguyen A, Tran S, vd. Silver-loaded mesoporous silica nanoparticles enhanced the mechanical and antimicrobial properties of 3D printed denture base resin. J Mech Behav Biomed Mater. 2022;134:105-421.
  • 61. Chen S, Yang J, Jia YG, Lu B, Ren L. A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal. Materials. 2018;11(12):24-44.
  • 62. Asopa V, Suresh S, Khandelwal M, Sharma V, Asopa SS, Kaira LS. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J Dent Res. 2015;6(2):146-51.
  • 63. Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine. 2018;13:283-92.
  • 64. Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine. 2017;12:3801.
  • 65. Alshaikh AA, Khattar A, Almindil IA, Alsaif MH, Akhtar S, Khan SQ, vd. 3D-printed nanocomposite denture-base resins: effect of ZrO2 nanoparticles on the mechanical and surface properties in vitro. Nanomaterials. 2022;12(14):24-51.
  • 66. Harie Priya M S P, Muthukumar B. 3D Printed denture resin reinforced with porosphere and zinc oxide nanoparticles. IJCBS. 2023;23(1):372-8.
  • 67. Vikram S, Chander NG. Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. Eur Oral Res. 2020;54(1):31-5.
  • 68. Cevik P, Yildirim-Bicer AZ. The Effect of Silica and Prepolymer Nanoparticles on the Mechanical Properties of Denture Base Acrylic Resin. J Prosthodont. 2018;27(8):763-70.
  • 69. Gad MMA, Abualsaud R, Al-Thobity AM, Almaskin DF, Alzaher ZA, Abushowmi TH, vd. Effect of SiO2 Nanoparticles Addition on the Flexural Strength of Repaired Acrylic Denture Base. Eur J Dent. 2020;14(1):19.
  • 70. Abushowmi TH, AlZaher ZA, Almaskin DF, Qaw MS, Abualsaud R, Akhtar S, vd. Comparative Effect of Glass Fiber and Nano-Filler Addition on Denture Repair Strength. J Prosthodont. 2020;29(3):261-8.
  • 71. Gad MM, Al‐Harbi FA, Akhtar S, Fouda SM. 3D‐Printable Denture Base Resin Containing SiO2 Nanoparticles: An In Vitro Analysis of Mechanical and Surface Properties. J Prosthodont. 2022;31(9):784-90.
  • 72. Özler B. Investigation on the Enhanced Performance of Acrylate Resin Reinforced with SiO2 Nanoparticles for Dental 3D Printing. Res Sq. 2023;1-22.

3 Boyutlu Yazıcı ile Üretilen Akrilik Rezinler ve Nanopartikül İlavesi

Year 2024, Volume: 10 Issue: 3, 126 - 136, 31.12.2024
https://doi.org/10.21306/dishekimligi.1504645

Abstract

Sağlık alanındaki son gelişmelerin bir parçası olarak nanoteknoloji, atom ve moleküler seviyede malzemeler geliştirip üretmeyi amaçlamakta ve üstün özelliklere sahip biyomalzemeler sunmaktadır. Diş hekimliği uygulamalarında ve protez kaidelerinin üretiminde konvansiyonel olarak polimetilmetakrilat (PMMA) sıklıkla kullanılmakla birlikte, son yıllarda 3 boyutlu (3B) baskı teknolojisi ve rezinlerinin de kullanımı yaygınlaşmaktadır. Bu teknolojik ilerlemelerin, diş hekimliği alanında materyal biliminin gelişimine önemli ölçüde katkı sunacağı ve hastalara daha dayanıklı, estetik ve fonksiyonel restorasyon seçenekleri sunabileceği öngörülmektedir. Protetik diş hekimliğinde kullanılan akrilik bazlı materyaller ve 3B yazıcı rezinlere nanopartiküllerin ilavesi ile materyallerin mekanik ve fiziksel özelliklerinin iyileştirilmesi konusu son yıllarda literatürede sıklıkla araştırılmaktadır. Nanopartiküllerin, özellikle titanyum dioksit, gümüş ve zirkonyum gibi metal nanopartiküllerin mekanik avantajlar sağlayarak protetik diş hekimliğinde kullanılan materyallerin gelişimine katkıda bulunabileceği gözlenmektedir. Bu derleme çalışmasında, nanoteknolojinin ve 3B baskı teknolojisinin diş hekimliği uygulamalarında kullanımları ile birlikte, titanyum dioksit, gümüş, çinko oksit, silikon oksit ve zirkonyum dioksit gibi nanopartiküller ve bu nanopartiküllerin 3B yazıcıda üretilen akrilik rezinlere ilavesinin materyalin fiziksel ve mekanik özellliklerine olan etkisi anlatılmaktadır.

References

  • 1. Pourhajibagher M, Salehi Vaziri A, Takzaree N, Ghorbanzadeh R. Physico-mechanical and antimicrobial properties of an orthodontic adhesive containing cationic curcumin doped zinc oxide nanoparticles subjected to photodynamic therapy. Photodiagnosis Photodyn Ther. 2019;25:239-46.
  • 2. Zafar MS. Prosthodontic applications of polymethyl methacrylate PMMA. Polymers (Basel). 2020;12(10):2299.
  • 3. Ulusoy M, AK A. Diş hekimliğinde hareketli bölümlü protezler. 3. bs. C. 1. Ankara: Ankara Üniversitesi Dişhekimliği Fakültesi Yayınları; 2003. 10-16.
  • 4. Kantar K. Kopolimer yapıda hazırlanan akrilik rezinlerin termal ve reolojik özelliklerinin dinamik mekanik analiz (DMA) ile incelenmesi. Doktora Tezi, Ankara Üniversitesi Saglık Bilimleri Enstitüsü; 2005.
  • 5. O’Brien WJ. Denture Base Polymers. In: Dental materials and their selection.3rd ed. O’Brien WJ. Editör. Quinttessence Publication Comp.USA.2002: 377-421.
  • 6. Kim SH, Watts DC. The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent. 2004;91(3):274-80.
  • 7. Jagger DC, Harrison A. The effect of chopped poly(methyl methacrylate) fibers on some properties of acrylic resin denture base material. Int J Prosthodont. 1999;12(6):542-6.
  • 8. Revilla‐León M, Özcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont. 2019;28(2):146-58.
  • 9. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials. 2016;32(1):54-64.
  • 10. Revilla‐León M, Özcan M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J Prosthodont. 2019;28(2):146-58.
  • 11. Tian Y, Chen CX, Xu X, Wang J, Hou X, Li K, vd. A Review of 3D printing in dentistry: technologies, affecting factors, and applications. Scanning. 2021;2021:1-19.
  • 12. Mubaraki MQ, Moaleem MM Al, Alzahrani AH, Shariff M, Alqahtani SM, Porwal A, vd. Assessment of Conventionally and Digitally Fabricated Complete Dentures: A Comprehensive Review. Materials. 2022;15(11):3868.
  • 13. Alshamrani AA, Raju R, Ellakwa A. Effect of Printing Layer Thickness and Postprinting Conditions on the Flexural Strength and Hardness of a 3D-Printed Resin. Biomed Res Int. 2022;2022:1-9.
  • 14. Schweiger J, Edelhoff D, Güth JF. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J Clin Med. 2021;10(9):2010.
  • 15. Nayar S, Bhuminathan S, Bhat W. Rapid prototyping and stereolithography in dentistry. J Pharm Bioallied Sci. 2015;7(5):216.
  • 16. Yavuz E, Yılmaz S. Diş hekimliğinde Yeni ve Hızla İlerleyen Üretim Teknolojisi: 3 Boyutlu Yazıcılar. Akdeniz Med J. 2021;7(2):197-205.
  • 17. Aral M, Keskin Y. Diş Hekimliğinde 3 Boyutlu - Eklemeli Üretim: Derleme. Journal of International Dental Sciences. 2024;10(1):1-11.
  • 18. Methani MM, Revilla‐León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all‐ceramic crowns: A review. J Esthet Restor Dent . 2020;32(2):182-92.
  • 19. Lee D, Lee S, Kim H, Park C. A Hybrid Dental Model Concept Utilizing Fused Deposition Modeling and Digital Light Processing 3D Printing. Int J Prosthodont. 2020;33(2):229-31.
  • 20. Pragana JPM, Sampaio RFV, Bragança IMF, Silva CMA, Martins PAF. Hybrid metal additive manufacturing: A state–of–the-art review. Advances in Industrial and Manufacturing Engineering. 2021;2:100032.
  • 21. Demiralp E, Doğru G, Ylmaz H. Additive Manufacturing (3D PRINTING) Methods and Applications in Dentistry. Clinical and Experimental Health Sciences. 2021;11(1):182-90.
  • 22. Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res. 2019;9(3):179-85.
  • 23. Rezaie F, Farshbaf M, Dahri M, Masjedi M, Maleki R, Amini F, vd. 3D Printing of Dental Prostheses: Current and Emerging Applications. J Compos Sci. 2023;7(2):80.
  • 24. Fiedor P, Ortyl J. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. Materials. 2020;13(13):29-51.
  • 25. Kessler A, Hickel R, Reymus M. 3D Printing in Dentistry-State of the Art. Oper Dent. 2020;45(1):30-40.
  • 26. Gibson I, Rosen D, Stucker B, Khorasani M, Rosen D, Stucker B, vd. Additive manufacturing technologies. 3. bs. Switzerland: Springer; 2021.
  • 27. Crafts TD, Ellsperman SE, Wannemuehler TJ, Bellicchi TD, Shipchandler TZ, Mantravadi A V. Three-Dimensional Printing and Its Applications in Otorhinolaryngology–Head and Neck Surgery. Otolaryngol Head Neck Surg. 2016;156(6):999-1010.
  • 28. Harada Y, Ishida Y, Miura D, Watanabe S, Aoki H, Miyasaka T, vd. Mechanical Properties of Selective Laser Sintering Pure Titanium and Ti-6Al-4V, and Its Anisotropy. Materials. 2020;13(22):5081.
  • 29. Mangano C, Mangano FG, Shibli JA, Roth LA, D’ Addazio G, Piattelli A, vd. Immunohistochemical Evaluation of Peri-Implant Soft Tissues around Machined and Direct Metal Laser Sintered (DMLS) Healing Abutments in Humans. Int J Environ Res Public Health. 2018;15(8):1611.
  • 30. Svetlizky D, Das M, Zheng B, Vyatskikh AL, Bose S, Bandyopadhyay A, vd. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today. 2021;49:271-95.
  • 31. Abioye TE, Medrano-Tellez A, Farayibi PK, Oke PK. Laser metal deposition of multi-track walls of 308LSi stainless steel. Materials and Manufacturing Processes. 2017;32(14):1660-6.
  • 32. Rajora A, Kumar R, Singh R, Sharma S, Kapoor S, Mishra A. 3D Printing: A Review On The Transformation Of Additive Manufacturing. Mater Today Proc. 2022;35-47.
  • 33. Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J Oral Biol Craniofac Res. 2019;9(3):179-85.
  • 34. Cooper LF. The Current and Future Treatment of Edentulism. J Prosthodont. 2009;18(2):116-22.
  • 35. Al-Rafee M. The epidemiology of edentulism and the associated factors: A literature Review. J Family Med Prim Care. 2020;9(4):1841.
  • 36. Lee DJ, Saponaro PC. Management of Edentulous Patients. Dent Clin North Am. 2019;63(2):249-61.
  • 37. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-5.
  • 38. Wu L, Zhao L, Jian M, Mao Y, Yu M, Guo X. EHMP-DLP: multi-projector DLP with energy homogenization for large-size 3D printing. Rapid Prototyp J. 2018;24(9):1500-10.
  • 39. Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent. 2016;116(2):249-56.
  • 40. Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J Prosthodont. 2020;29(6):524-8.
  • 41. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO 2 nanoparticles inclusion for stereolitographic complete denture manufacturing − the fututre in dental care for elderly edentulous patients? J Dent. 2017;59:68-77.
  • 42. Jieun L. Impact Strength of 3D Printed and Conventional Heat-Cured and Cold-Cured Denture Base Acrylics. The University of Texas School of Dentistry at Houston; 2020;  27999468.
  • 43. Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al-Thobity AM, Khan SQ, vd. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J Prosthodont. 2022;31(5):412-8.
  • 44. Freitas RA. Nanodentistry. J Am Dent Assoc. 2000;131(11):1559-65.
  • 45. Trapalis CC, Keivanidis P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, vd. TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films. 2003;433(1-2):186-90.
  • 46. Sodagar A, Akhoundi MSA, Bahador A, Jalali YF, Behzadi Z, Elhaminejad F, vd. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dental Press J Orthod. 2017;22(5):67-74.
  • 47. Agnihotri R, Gaur S, Albin S. Nanometals in Dentistry: Applications and Toxicological Implications-A Systematic Review. Biol Trace Elem Res. 2020;197(1):70-88.
  • 48. Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J Oral Biol Craniofac Res. 2018;8(1):58-67.
  • 49. Xu K, Li Y, Hu J, Li F, Tian J, Xue B, vd. Effect of titanium dioxide nanoparticles on Silkworm’s innate immunity and resistance to Bacillus bombyseptieus. Sci Adv Mater. 2016;8(8):1512-22.
  • 50. Pant HR, Pandeya DR, Nam KT, Baek W il, Hong ST, Kim HY. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazardous Materials. 2011;189(1-2):465-71.
  • 51. Reijnders L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab. 2009;94(5):873-6.
  • 52. Sodagar A, Bahador A, Khalil S, Saffar Shahroudi A, Zaman Kassaee M. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res. 2013;57(1):15-9.
  • 53. Alrahlah A, Fouad H, Hashem M, Niazy AA, AlBadah A. Titanium Oxide (TiO2) /Polymethylmethacrylate (PMMA) Denture Base Nanocomposites: Mechanical, Viscoelastic and Antibacterial Behavior. Materials. 2018;11(7):1096.
  • 54. Aktitiz İ, Aydın K, Topcu A. Characterization of TiO2 nanoparticle–reinforced polymer nanocomposite materials printed by stereolithography method. J Mater Eng Perform. 2021;30(7):4975-80.
  • 55. Aktitiz I, Varol R, Akkurt N, Saraç MF. In-situ synthesis of 3D printable mono- and Bi-metallic (Cu/Ag) nanoparticles embedded polymeric structures with enhanced electromechanical properties. Polym Test. 2020;90:106724.
  • 56. Alghamdi MA, Fouda SM, Taymour N, Akhtar S, Khan SQ, Ali MS, vd. Comparative Evaluation of TiO2 Nanoparticle Addition and Postcuring Time on the Flexural Properties and Hardness of Additively Fabricated Denture Base Resins. Nanomaterials. 2023;13(23):3061.
  • 57. Liu Y, Chen J, Ning L, Sun J, Liu L, Zhao K. Preparation and properties of nano-TiO2-modified photosensitive materials for 3D printing. E-Polymers. 2022;22(1):686-95.
  • 58. Ju SP, Chen HY, Shih CW. Investigating mechanical properties of polymethylmethacrylate/silver nanoparticle composites by molecular dynamics simulation. Journal of Nanoparticle Research. 2018;20(1):1-17.
  • 59. Hamedi-Rad F, Ghaffari T, Rezaii F, Ramazani A. Effect of Nanosilver on Thermal and Mechanical Properties of Acrylic Base Complete Dentures. J Dent (Tehran). 2014;11(5):495.
  • 60. Aati S, Aneja S, Kassar M, Leung R, Nguyen A, Tran S, vd. Silver-loaded mesoporous silica nanoparticles enhanced the mechanical and antimicrobial properties of 3D printed denture base resin. J Mech Behav Biomed Mater. 2022;134:105-421.
  • 61. Chen S, Yang J, Jia YG, Lu B, Ren L. A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal. Materials. 2018;11(12):24-44.
  • 62. Asopa V, Suresh S, Khandelwal M, Sharma V, Asopa SS, Kaira LS. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J Dent Res. 2015;6(2):146-51.
  • 63. Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine. 2018;13:283-92.
  • 64. Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine. 2017;12:3801.
  • 65. Alshaikh AA, Khattar A, Almindil IA, Alsaif MH, Akhtar S, Khan SQ, vd. 3D-printed nanocomposite denture-base resins: effect of ZrO2 nanoparticles on the mechanical and surface properties in vitro. Nanomaterials. 2022;12(14):24-51.
  • 66. Harie Priya M S P, Muthukumar B. 3D Printed denture resin reinforced with porosphere and zinc oxide nanoparticles. IJCBS. 2023;23(1):372-8.
  • 67. Vikram S, Chander NG. Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. Eur Oral Res. 2020;54(1):31-5.
  • 68. Cevik P, Yildirim-Bicer AZ. The Effect of Silica and Prepolymer Nanoparticles on the Mechanical Properties of Denture Base Acrylic Resin. J Prosthodont. 2018;27(8):763-70.
  • 69. Gad MMA, Abualsaud R, Al-Thobity AM, Almaskin DF, Alzaher ZA, Abushowmi TH, vd. Effect of SiO2 Nanoparticles Addition on the Flexural Strength of Repaired Acrylic Denture Base. Eur J Dent. 2020;14(1):19.
  • 70. Abushowmi TH, AlZaher ZA, Almaskin DF, Qaw MS, Abualsaud R, Akhtar S, vd. Comparative Effect of Glass Fiber and Nano-Filler Addition on Denture Repair Strength. J Prosthodont. 2020;29(3):261-8.
  • 71. Gad MM, Al‐Harbi FA, Akhtar S, Fouda SM. 3D‐Printable Denture Base Resin Containing SiO2 Nanoparticles: An In Vitro Analysis of Mechanical and Surface Properties. J Prosthodont. 2022;31(9):784-90.
  • 72. Özler B. Investigation on the Enhanced Performance of Acrylate Resin Reinforced with SiO2 Nanoparticles for Dental 3D Printing. Res Sq. 2023;1-22.
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Dental Materials and Equipment, Prosthodontics
Journal Section Collection
Authors

Beşar İzzetağa 0000-0001-7075-2265

Gaye Sağlam 0000-0002-6102-4933

Ayşegül Köroğlu 0000-0002-0288-6357

Publication Date December 31, 2024
Submission Date June 28, 2024
Acceptance Date October 8, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA İzzetağa, B., Sağlam, G., & Köroğlu, A. (2024). 3 Boyutlu Yazıcı ile Üretilen Akrilik Rezinler ve Nanopartikül İlavesi. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi), 10(3), 126-136. https://doi.org/10.21306/dishekimligi.1504645
AMA İzzetağa B, Sağlam G, Köroğlu A. 3 Boyutlu Yazıcı ile Üretilen Akrilik Rezinler ve Nanopartikül İlavesi. J Int Dent Sci. December 2024;10(3):126-136. doi:10.21306/dishekimligi.1504645
Chicago İzzetağa, Beşar, Gaye Sağlam, and Ayşegül Köroğlu. “3 Boyutlu Yazıcı Ile Üretilen Akrilik Rezinler Ve Nanopartikül İlavesi”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 10, no. 3 (December 2024): 126-36. https://doi.org/10.21306/dishekimligi.1504645.
EndNote İzzetağa B, Sağlam G, Köroğlu A (December 1, 2024) 3 Boyutlu Yazıcı ile Üretilen Akrilik Rezinler ve Nanopartikül İlavesi. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 10 3 126–136.
IEEE B. İzzetağa, G. Sağlam, and A. Köroğlu, “3 Boyutlu Yazıcı ile Üretilen Akrilik Rezinler ve Nanopartikül İlavesi”, J Int Dent Sci, vol. 10, no. 3, pp. 126–136, 2024, doi: 10.21306/dishekimligi.1504645.
ISNAD İzzetağa, Beşar et al. “3 Boyutlu Yazıcı Ile Üretilen Akrilik Rezinler Ve Nanopartikül İlavesi”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi) 10/3 (December 2024), 126-136. https://doi.org/10.21306/dishekimligi.1504645.
JAMA İzzetağa B, Sağlam G, Köroğlu A. 3 Boyutlu Yazıcı ile Üretilen Akrilik Rezinler ve Nanopartikül İlavesi. J Int Dent Sci. 2024;10:126–136.
MLA İzzetağa, Beşar et al. “3 Boyutlu Yazıcı Ile Üretilen Akrilik Rezinler Ve Nanopartikül İlavesi”. Journal of International Dental Sciences (Uluslararası Diş Hekimliği Bilimleri Dergisi), vol. 10, no. 3, 2024, pp. 126-3, doi:10.21306/dishekimligi.1504645.
Vancouver İzzetağa B, Sağlam G, Köroğlu A. 3 Boyutlu Yazıcı ile Üretilen Akrilik Rezinler ve Nanopartikül İlavesi. J Int Dent Sci. 2024;10(3):126-3.

The journal receives submissions of research articles, case reports and review-type publications, and these are indexed by international and national indexes.

The International Journal of Dental Sciences has been indexed by Europub, the Asian Science Citation Index, the Asos index, the ACAR index and Google Scholar. In addition, applications were made to TR Index and other indexes.