Review
BibTex RIS Cite

ENDOVASKÜLER GİRİŞİMLERDE TEKNOLOJİK UYGULAMALAR

Year 2025, Volume: 7 Issue: 3, 101 - 116, 28.10.2025

Abstract

Kateter bazlı teknikler aracılığıyla gerçekleştirilen endovasküler girişimler, damar hastalıklarının tedavisinde kullanılan minimal invaziv tıbbi prosedürlerdir. Bu yöntemler, geleneksel açık cerrahiye kıyasla iyileşme süresini kısaltır, komplikasyon riskini azaltır ve operasyonel zorlukları en aza indirir. Yeni teknolojiler, endovasküler prosedürleri geliştirerek güvenliğini ve etkinliğini artırmış ve hedefe yönelik tedavilerin daha iyi sonuçlar üretmesini sağlamıştır. Bu makale, modern tıpta bu teknolojilerin mevcut durumunu ve gelecekteki yenilik potansiyelini incelemek amacıyla hazırlanmıştır.

Ethical Statement

Conflict of Interest Statement The author (s) have declared that they have no conflict of interest in the preparation and publication of this manuscript. Funding The author has declared that no financial support was received for the research and writing of this manuscript.

References

  • 1. Ucak A, Onan B, Inan BK, Temizkan V, Ugur M, Yilmaz AT. Hybrid repair of an acute type B dissection with subclavian-to-subclavian bypass and stent-grafting. J Card Surg. 2010; 25:336-339.
  • 2. Inan K, Ucak A, Onan B, Temizkan V, Ugur M, Yilmaz AT. Bilateral renal artery occlusion due to intraoperative retrograde migration of an abdominal aortic aneurysm endograft. J Vasc Surg. 2010; 51:720-724.
  • 3. Pochettino A, Brinkman WT, Moeller P, Szeto WY, Moser W, Cornelius K, et al. Antegrade thoracic stent grafting during repair of acute DeBakey I dissection prevents development of thoracoabdominal aortic aneurysms. Ann Thorac Surg. 2009; 88:482-489.
  • 4. Uğur M, Alp İ, Arslan G, Şenay Ş, Selçuk İ, Selçuk A, Temizkan V, Uçak A, Yılmaz AT. Endovascular and hybrid treatment in the management of vascular disease: experience of a cardiovascular surgery department. Turk Gogus Kalp Dama. 2012;20(2):230-242. doi: 10.5606/tgkdc.dergisi.2012.046
  • 5. Stella A. The Way we were Technology will Change the Profession of Vascular Surgery. Transl Med UniSa. 2020; 21:52-58.
  • 6. Sumner DS. In memoriam: Donald Eugene Strandness, Jr, MD (1928–2002). Vasc Med. 2002; 7:1–2.
  • 7. Gruntzig A, Kumpe DA. Technique of percutaneous transluminal angioplasty with the Gruntzig balloon catheter. AJR Am J Roentgenol. 1979; 132:547-552.
  • 8. Katzen BT, Chang J. Percutaneous transluminal angioplasty with the Grüntzig balloon catheter. Radiology. 1979; 130:623-626.
  • 9. Montero-Baker M, Braun JD, Weinkauf C, Leon LR. Technological Advances in Endovascular Surgery. In: Latifi R, Rhee P, Gruessner R, editors. Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY; 2015. https://doi.org/10.1007/978-1-4939-2671-8_28
  • 10. Muehrcke D. Angiography during cardiovascular surgery. In: Aleassa E, El-Hayek K, editors. Video atlas of intraoperative applications of near infrared fluorescence imaging. Cham: Springer; 2020. p. 7. https://doi.org/10.1007/978-3-030-38092-2_7.
  • 11. Desai ND, Miwa S, Kodama D, Cohen G, Christakis GT, Goldman BS, Baerlocher MO, Pelletier MP, Fremes SE. Improving the quality of coronary bypass surgery with intraoperative angiography: validation of a new technique. J Am Coll Cardiol. 2005;46(8):1521-1525. doi: 10.1016/j.jacc.2005.05.081
  • 12. Alexander JH, Hafley G, Harrington RA, Peterson ED, Ferguson TB Jr, Lorenz TJ, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005;294(19):2446-2454. doi: 10.1001/jama.294.19.2446
  • 13. Youssef SJ, Millan JA, Youssef GM, Earnheart A, Lehr EJ, Barnhart GR. The role of computed tomography angiography in patients undergoing evaluation for minimally invasive cardiac surgery: an early program experience. Innovations (Phila). 2015;10(1):33-8. doi: 10.1097/IMI.0000000000000126
  • 14. Öncel D, Öncel G. Clinical applications of computed tomography coronary angiography. Turk Gogus Kalp Dama. 2009; 17:054-065.
  • 15. Achenbach S. Cardiac CT: state of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr. 2007; 1:3-20.
  • 16. Schoepf UJ, Becker CR, Ohnesorge BM, Yucel EK. CT of coronary artery disease. Radiology. 2004; 232:18-37.
  • 17. Schoenhagen P, Halliburton SS, Stillman AE, Kuzmiak SA, Nissen SE, Tuzcu EM, et al. Noninvasive imaging of coronary arteries: current and future role of multi-detector row CT. Radiology. 2004; 232:7-17.
  • 18. Schoepf UJ, Zwerner PL, Savino G, Herzog C, Kerl JM, Costello P. Coronary CT angiography. Radiology. 2007; 244:48-63.
  • 19. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, et al. Dual-source CT cardiac imaging: initial experience. Eur Radiol. 2006; 16:1409-1415.
  • 20. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006; 16:256-268.
  • 21. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol. 2006; 57:331-335.
  • 22. Jeans WD, Stout P. The development and use of digital subtraction angiography. Br J Radiol. 1990;63(747):161-168. doi:10.1259/0007-1285-63-747-161.
  • 23. Martin E. Concise Medical Dictionary. Oxford: Oxford University Press; 2015. ISBN 9780199687817.
  • 24. Hanafee W, Stout P. Subtraction Technic. Radiology. 1962;79(4):658-661. doi:10.1148/79.4.658.
  • 25. Thaker NG, Turner JD, Cobb WS, Hussain I, Janjua N, He W, et al. Computed tomographic angiography versus digital subtraction angiography for the postoperative detection of residual aneurysms: a single-institution series and meta-analysis. J Neurointerv Surg. 2012; 4:219–225. doi: 10.1136/neurintsurg-2011-010025.
  • 26. Gölitz P, Struffert T, Ganslandt O, Lang S, Knossalla F, Doerfler A. Contrast-enhanced angiographic computed tomography for detection of aneurysm remnants after clipping: a comparison with digital subtraction angiography in 112 clipped aneurysms. Neurosurgery. 2014; 74:606–613; discussion 613. doi: 10.1227/NEU.0000000000000326
  • 27. Doelare SAN, Smorenburg SPM, van Schaik TG, et al. Image Fusion during standard and complex endovascular aortic repair, to fuse or not to fuse? a meta-analysis and additional data from a single-center retrospective cohort. J Endovasc Ther. 2021;28(1):78–92.
  • 28. Stangenberg L, Shuja F, Carelsen B, et al. A novel tool for three-dimensional roadmapping reduces radiation exposure and contrast agent dose in complex endovascular interventions. J Vasc Surg. 2015;62(2):448–455.
  • 29. Shi C, Luo X, Guo J, Najdovski Z, Fukuda T, Ren H. Three-Dimensional Intravascular Reconstruction Techniques Based on Intravascular Ultrasound: A Technical Review. IEEE J Biomed Health Inform. 2018;22(3):806-817. doi: 10.1109/JBHI.2017.2703903
  • 30. Torres IO, De Luccia N. A simulator for training in endovascular aneurysm repair: The use of three dimensional printers. Eur J Vasc Endovasc Surg. 2017;54(2):247-253. doi: 10.1016/j.ejvs.2017.05.011
  • 31. Tam CA, Chan YC, Law Y, Cheng SWK. The role of three-dimensional printing in contemporary vascular and endovascular surgery: a systematic review. Ann Vasc Surg. 2018;53: 198-210. doi: 10.1016/j.avsg.2018.04.038
  • 32. Tam MD, Laycock SD, Brown JR, Jakeways M. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J Endovasc Ther. 2013;20(6):863-7. doi: 10.1583/13-4450MR.1
  • 33. Marone EM, Auricchio F, Marconi S, Conti M, Rinaldi LF, Pietrabissa A, Argenteri A. Effectiveness of 3D printed models in the treatment of complex aortic diseases. J Cardiovasc Surg (Torino). 2018;59(5):699-706. doi: 10.23736/S0021-9509.18.10324-7
  • 34. van den Berg JC, Overtoom TT, de Valois JC, Moll FL. Using three-dimensional rotational angiography for sizing of covered stents. AJR Am J Roentgenol. 2002;178(1):149-152. doi: 10.2214/ajr.178.1.1780149
  • 35. Arnold MJ, Keung JJ, McCarragher B. Interventional Radiology: Indications and Best Practices. Am Fam Physician. 2019;99(9):547-556.
  • 36. de Donato G, Pasqui E, Setacci F, Palasciano G, Nigi L, Fondelli C, et al. Acute on chronic limb ischemia: From surgical embolectomy and thrombolysis to endovascular options. Semin Vasc Surg. 2018;31(2-4):66-75. doi: 10.1053/j.semvascsurg.2018.12.008
  • 37. Hage AN, McDevitt JL, Chick JFB, Vadlamudi V. Acute Limb Ischemia Therapies: When and How to Treat Endovascularly. Semin Intervent Radiol. 2018;35(5):453-460. doi: 10.1055/s-0038-1676321
  • 38. Bonatti J, Vetrovec G, Riga C, Wazni O, Stadler P. Robotic technology in cardiovascular medicine. Nat Rev Cardiol. 2014;11(5):266-275. doi: 10.1038/nrcardio.2014.23
  • 39. Riga C, Bicknell C, Cheshire N, Hamady M. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J Endovasc Ther; 2:149–153.
  • 40. Riga CV, Cheshire NJW, Hamady MS, Bicknell CD. The role of robotic endovascular catheters in fenestrated stent grafting. J Vasc Surg; 4:810–819.
  • 41. Rippel RA, Rolls AE, Riga CV, Hamady M, Cheshire NJ, Bicknell CD. The use of robotic endovascular catheters in the facilitation of transcatheter aortic valve implantation. Eur J Cardiothorac Surg; 45(5):836-841. doi: 10.1093/ejcts/ezt524.
  • 42. Riga CV, Bicknell CD, Hamady MS, Cheshire NJW. Evaluation of robotic endovascular catheters for arch vessel cannulation. J Vasc Surg; 3:799–809.
  • 43. Rolls A, Riga C. Endovascular robotics. Ann R Coll Surg Engl. 2018;100(Suppl 7):14-17. doi: 10.1308/rcsann.supp2.14
  • 44. Tasoudis PT, Caranasos TG, Doulamis IP. Robotic applications for intracardiac and endovascular procedures. Trends Cardiovasc Med. 2024;34(2):110-117. doi: 10.1016/j.tcm.2022.10.002
  • 45. Arrell T, Dastur N, Salter R, Taylor P. Use of a remotely steerable “robotic” catheter in a branched endovascular aortic graft. J Vasc Surg. 2012; 1:223–225.
  • 46. Lumsden AB, Anaya-Ayala JE, Birnbaum I, Davies MG, Bismuth J, Cheema ZF, et al. Robot-assisted stenting of a high-grade anastomotic pulmonary artery stenosis following single lung transplantation. J Endovasc Ther. 2010;5:612–616.
  • 47. Wolujewicz M. Robotic-assisted endovascular pulmonary artery foreign body retrieval: a case report. Vasc Endovascular Surg. 2016; 3:168–170.
  • 48. Pescio M, Kundrat D, Dagnino G. Endovascular robotics: technical advances and future directions. Minim Invasive Ther Allied Technol. 2025:1-14. doi: 10.1080/13645706.2025.2454237
  • 49. Antoniou GA, Riga CV, Mayer EK, Cheshire NJ, Bicknell CD. Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg. 2011;53(2):493-9. doi: 10.1016/j.jvs.2010.06.154
  • 50. Kantaros A, Petrescu FIT, Ganetsos T. From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Biomimetics (Basel). 2025;10(2):125. doi: 10.3390/biomimetics10020125
  • 51. Scafa Udriște A, Niculescu A-G, Grumezescu AM, Bădilă E. Cardiovascular stents: A review of past, current, and emerging devices. Materials. 2021; 14:2498. doi: 10.3390/ma14102498.
  • 52. Slavkovic V, Palic N, Milenkovic S, Zivic F, Grujovic N. Thermo-mechanical characterization of 4D-printed biodegradable shape-memory scaffolds using four-axis 3D-printing system. Materials. 2023; 16:5186. doi: 10.3390/ma16145186.
  • 53. Chen X, Assadsangabi B, Hsiang Y, Takahata K. Enabling angioplasty-ready "smart" stents to detect in-stent restenosis and occlusion. Adv Sci. 2017;5(5):1700560. doi: 10.1002/advs.201700560
  • 54. Chaparro-Rico BDM, Sebastiano F, Cafolla D. A smart stent for monitoring eventual restenosis: Computational fluid dynamic and finite element analysis in descending thoracic aorta. Machines. 2020; 8:81. doi: 10.3390/machines8040081.
  • 55. Hatami H, Almahmeed W, Kesharwani P, Sahebkar A. Exploring the potential of 3D and 4D printing in advancing stent manufacturing for cardiovascular diseases. Eur Polym J. 2024; 212:113035. doi: 10.1016/j.eurpolymj.2024.113035
  • 56. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12(7):4250-70. doi: 10.3390/ijms12074250
  • 57. Bowen PK, Shearier ER, Zhao S, Guillory RJ 2nd, Zhao F, Goldman J, et al. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys. Adv Healthc Mater. 2016;5(10):1121-1140. doi: 10.1002/adhm.201501019.
  • 58. Hu T, Yang C, Lin S, Yu Q, Wang G. Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives. Mater Sci Eng C Mater Biol Appl. 2018; 91:163-178.
  • 59. Kappe KO, Smorenburg SPM, Hoksbergen AWJ, Wolterink JM, Yeung KK. Deep Learning-Based Intraoperative Stent Graft Segmentation on Completion Digital Subtraction Angiography During Endovascular Aneurysm Repair. J Endovasc Ther. 2023;30(6):822-827. doi: 10.1177/15266028221105840
  • 60. Bagheri AB, Rouzi MD, Koohbanani NA, Mahoor MH, Finco MG, Lee M, Najafi B, Chung J, et al. Potential applications of artificial intelligence and machine learning on diagnosis, treatment, and outcome prediction to address health care disparities of chronic limb-threatening ischemia. Semin Vasc Surg. 2023;36(3):454-459. doi: 10.1053/j.semvascsurg.2023.06.003
  • 61. Fliegenschmidt J, Hulde N, Gedinha Preising M, Ruggeri S, Szymanowsky R, Meesseman L, Sun H, Dahlweid M, von Dossow V, et al. Leveraging artificial intelligence for the management of postoperative delirium following cardiac surgery. Eur J Anaesthesiol Intensive Care. 2022;2(1):e0010. doi: 10.1097/EA9.0000000000000010

TECHNOLOGICAL APPLICATIONS IN ENDOVASCULAR INTERVENTIONS

Year 2025, Volume: 7 Issue: 3, 101 - 116, 28.10.2025

Abstract

Through catheter based techniques, endovascular interventions are minimally invasive medical procedures used in the treatment of vascular diseases. They minimize recovery time, complication risk and operational difficulties relative to standard open surgery. New technologies have refined endovascular procedures, improved their safety and efficacy, and enabled targeted therapies to produce better outcomes. This article is used to review the face of these technologies in modern medicine and future innovation potential.

Ethical Statement

Conflict of Interest Statement The author (s) have declared that they have no conflict of interest in the preparation and publication of this manuscript. Funding The author has declared that no financial support was received for the research and writing of this manuscript.

Supporting Institution

N/A

Thanks

N/A

References

  • 1. Ucak A, Onan B, Inan BK, Temizkan V, Ugur M, Yilmaz AT. Hybrid repair of an acute type B dissection with subclavian-to-subclavian bypass and stent-grafting. J Card Surg. 2010; 25:336-339.
  • 2. Inan K, Ucak A, Onan B, Temizkan V, Ugur M, Yilmaz AT. Bilateral renal artery occlusion due to intraoperative retrograde migration of an abdominal aortic aneurysm endograft. J Vasc Surg. 2010; 51:720-724.
  • 3. Pochettino A, Brinkman WT, Moeller P, Szeto WY, Moser W, Cornelius K, et al. Antegrade thoracic stent grafting during repair of acute DeBakey I dissection prevents development of thoracoabdominal aortic aneurysms. Ann Thorac Surg. 2009; 88:482-489.
  • 4. Uğur M, Alp İ, Arslan G, Şenay Ş, Selçuk İ, Selçuk A, Temizkan V, Uçak A, Yılmaz AT. Endovascular and hybrid treatment in the management of vascular disease: experience of a cardiovascular surgery department. Turk Gogus Kalp Dama. 2012;20(2):230-242. doi: 10.5606/tgkdc.dergisi.2012.046
  • 5. Stella A. The Way we were Technology will Change the Profession of Vascular Surgery. Transl Med UniSa. 2020; 21:52-58.
  • 6. Sumner DS. In memoriam: Donald Eugene Strandness, Jr, MD (1928–2002). Vasc Med. 2002; 7:1–2.
  • 7. Gruntzig A, Kumpe DA. Technique of percutaneous transluminal angioplasty with the Gruntzig balloon catheter. AJR Am J Roentgenol. 1979; 132:547-552.
  • 8. Katzen BT, Chang J. Percutaneous transluminal angioplasty with the Grüntzig balloon catheter. Radiology. 1979; 130:623-626.
  • 9. Montero-Baker M, Braun JD, Weinkauf C, Leon LR. Technological Advances in Endovascular Surgery. In: Latifi R, Rhee P, Gruessner R, editors. Technological Advances in Surgery, Trauma and Critical Care. Springer, New York, NY; 2015. https://doi.org/10.1007/978-1-4939-2671-8_28
  • 10. Muehrcke D. Angiography during cardiovascular surgery. In: Aleassa E, El-Hayek K, editors. Video atlas of intraoperative applications of near infrared fluorescence imaging. Cham: Springer; 2020. p. 7. https://doi.org/10.1007/978-3-030-38092-2_7.
  • 11. Desai ND, Miwa S, Kodama D, Cohen G, Christakis GT, Goldman BS, Baerlocher MO, Pelletier MP, Fremes SE. Improving the quality of coronary bypass surgery with intraoperative angiography: validation of a new technique. J Am Coll Cardiol. 2005;46(8):1521-1525. doi: 10.1016/j.jacc.2005.05.081
  • 12. Alexander JH, Hafley G, Harrington RA, Peterson ED, Ferguson TB Jr, Lorenz TJ, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005;294(19):2446-2454. doi: 10.1001/jama.294.19.2446
  • 13. Youssef SJ, Millan JA, Youssef GM, Earnheart A, Lehr EJ, Barnhart GR. The role of computed tomography angiography in patients undergoing evaluation for minimally invasive cardiac surgery: an early program experience. Innovations (Phila). 2015;10(1):33-8. doi: 10.1097/IMI.0000000000000126
  • 14. Öncel D, Öncel G. Clinical applications of computed tomography coronary angiography. Turk Gogus Kalp Dama. 2009; 17:054-065.
  • 15. Achenbach S. Cardiac CT: state of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr. 2007; 1:3-20.
  • 16. Schoepf UJ, Becker CR, Ohnesorge BM, Yucel EK. CT of coronary artery disease. Radiology. 2004; 232:18-37.
  • 17. Schoenhagen P, Halliburton SS, Stillman AE, Kuzmiak SA, Nissen SE, Tuzcu EM, et al. Noninvasive imaging of coronary arteries: current and future role of multi-detector row CT. Radiology. 2004; 232:7-17.
  • 18. Schoepf UJ, Zwerner PL, Savino G, Herzog C, Kerl JM, Costello P. Coronary CT angiography. Radiology. 2007; 244:48-63.
  • 19. Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C, et al. Dual-source CT cardiac imaging: initial experience. Eur Radiol. 2006; 16:1409-1415.
  • 20. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006; 16:256-268.
  • 21. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol. 2006; 57:331-335.
  • 22. Jeans WD, Stout P. The development and use of digital subtraction angiography. Br J Radiol. 1990;63(747):161-168. doi:10.1259/0007-1285-63-747-161.
  • 23. Martin E. Concise Medical Dictionary. Oxford: Oxford University Press; 2015. ISBN 9780199687817.
  • 24. Hanafee W, Stout P. Subtraction Technic. Radiology. 1962;79(4):658-661. doi:10.1148/79.4.658.
  • 25. Thaker NG, Turner JD, Cobb WS, Hussain I, Janjua N, He W, et al. Computed tomographic angiography versus digital subtraction angiography for the postoperative detection of residual aneurysms: a single-institution series and meta-analysis. J Neurointerv Surg. 2012; 4:219–225. doi: 10.1136/neurintsurg-2011-010025.
  • 26. Gölitz P, Struffert T, Ganslandt O, Lang S, Knossalla F, Doerfler A. Contrast-enhanced angiographic computed tomography for detection of aneurysm remnants after clipping: a comparison with digital subtraction angiography in 112 clipped aneurysms. Neurosurgery. 2014; 74:606–613; discussion 613. doi: 10.1227/NEU.0000000000000326
  • 27. Doelare SAN, Smorenburg SPM, van Schaik TG, et al. Image Fusion during standard and complex endovascular aortic repair, to fuse or not to fuse? a meta-analysis and additional data from a single-center retrospective cohort. J Endovasc Ther. 2021;28(1):78–92.
  • 28. Stangenberg L, Shuja F, Carelsen B, et al. A novel tool for three-dimensional roadmapping reduces radiation exposure and contrast agent dose in complex endovascular interventions. J Vasc Surg. 2015;62(2):448–455.
  • 29. Shi C, Luo X, Guo J, Najdovski Z, Fukuda T, Ren H. Three-Dimensional Intravascular Reconstruction Techniques Based on Intravascular Ultrasound: A Technical Review. IEEE J Biomed Health Inform. 2018;22(3):806-817. doi: 10.1109/JBHI.2017.2703903
  • 30. Torres IO, De Luccia N. A simulator for training in endovascular aneurysm repair: The use of three dimensional printers. Eur J Vasc Endovasc Surg. 2017;54(2):247-253. doi: 10.1016/j.ejvs.2017.05.011
  • 31. Tam CA, Chan YC, Law Y, Cheng SWK. The role of three-dimensional printing in contemporary vascular and endovascular surgery: a systematic review. Ann Vasc Surg. 2018;53: 198-210. doi: 10.1016/j.avsg.2018.04.038
  • 32. Tam MD, Laycock SD, Brown JR, Jakeways M. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J Endovasc Ther. 2013;20(6):863-7. doi: 10.1583/13-4450MR.1
  • 33. Marone EM, Auricchio F, Marconi S, Conti M, Rinaldi LF, Pietrabissa A, Argenteri A. Effectiveness of 3D printed models in the treatment of complex aortic diseases. J Cardiovasc Surg (Torino). 2018;59(5):699-706. doi: 10.23736/S0021-9509.18.10324-7
  • 34. van den Berg JC, Overtoom TT, de Valois JC, Moll FL. Using three-dimensional rotational angiography for sizing of covered stents. AJR Am J Roentgenol. 2002;178(1):149-152. doi: 10.2214/ajr.178.1.1780149
  • 35. Arnold MJ, Keung JJ, McCarragher B. Interventional Radiology: Indications and Best Practices. Am Fam Physician. 2019;99(9):547-556.
  • 36. de Donato G, Pasqui E, Setacci F, Palasciano G, Nigi L, Fondelli C, et al. Acute on chronic limb ischemia: From surgical embolectomy and thrombolysis to endovascular options. Semin Vasc Surg. 2018;31(2-4):66-75. doi: 10.1053/j.semvascsurg.2018.12.008
  • 37. Hage AN, McDevitt JL, Chick JFB, Vadlamudi V. Acute Limb Ischemia Therapies: When and How to Treat Endovascularly. Semin Intervent Radiol. 2018;35(5):453-460. doi: 10.1055/s-0038-1676321
  • 38. Bonatti J, Vetrovec G, Riga C, Wazni O, Stadler P. Robotic technology in cardiovascular medicine. Nat Rev Cardiol. 2014;11(5):266-275. doi: 10.1038/nrcardio.2014.23
  • 39. Riga C, Bicknell C, Cheshire N, Hamady M. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J Endovasc Ther; 2:149–153.
  • 40. Riga CV, Cheshire NJW, Hamady MS, Bicknell CD. The role of robotic endovascular catheters in fenestrated stent grafting. J Vasc Surg; 4:810–819.
  • 41. Rippel RA, Rolls AE, Riga CV, Hamady M, Cheshire NJ, Bicknell CD. The use of robotic endovascular catheters in the facilitation of transcatheter aortic valve implantation. Eur J Cardiothorac Surg; 45(5):836-841. doi: 10.1093/ejcts/ezt524.
  • 42. Riga CV, Bicknell CD, Hamady MS, Cheshire NJW. Evaluation of robotic endovascular catheters for arch vessel cannulation. J Vasc Surg; 3:799–809.
  • 43. Rolls A, Riga C. Endovascular robotics. Ann R Coll Surg Engl. 2018;100(Suppl 7):14-17. doi: 10.1308/rcsann.supp2.14
  • 44. Tasoudis PT, Caranasos TG, Doulamis IP. Robotic applications for intracardiac and endovascular procedures. Trends Cardiovasc Med. 2024;34(2):110-117. doi: 10.1016/j.tcm.2022.10.002
  • 45. Arrell T, Dastur N, Salter R, Taylor P. Use of a remotely steerable “robotic” catheter in a branched endovascular aortic graft. J Vasc Surg. 2012; 1:223–225.
  • 46. Lumsden AB, Anaya-Ayala JE, Birnbaum I, Davies MG, Bismuth J, Cheema ZF, et al. Robot-assisted stenting of a high-grade anastomotic pulmonary artery stenosis following single lung transplantation. J Endovasc Ther. 2010;5:612–616.
  • 47. Wolujewicz M. Robotic-assisted endovascular pulmonary artery foreign body retrieval: a case report. Vasc Endovascular Surg. 2016; 3:168–170.
  • 48. Pescio M, Kundrat D, Dagnino G. Endovascular robotics: technical advances and future directions. Minim Invasive Ther Allied Technol. 2025:1-14. doi: 10.1080/13645706.2025.2454237
  • 49. Antoniou GA, Riga CV, Mayer EK, Cheshire NJ, Bicknell CD. Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg. 2011;53(2):493-9. doi: 10.1016/j.jvs.2010.06.154
  • 50. Kantaros A, Petrescu FIT, Ganetsos T. From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Biomimetics (Basel). 2025;10(2):125. doi: 10.3390/biomimetics10020125
  • 51. Scafa Udriște A, Niculescu A-G, Grumezescu AM, Bădilă E. Cardiovascular stents: A review of past, current, and emerging devices. Materials. 2021; 14:2498. doi: 10.3390/ma14102498.
  • 52. Slavkovic V, Palic N, Milenkovic S, Zivic F, Grujovic N. Thermo-mechanical characterization of 4D-printed biodegradable shape-memory scaffolds using four-axis 3D-printing system. Materials. 2023; 16:5186. doi: 10.3390/ma16145186.
  • 53. Chen X, Assadsangabi B, Hsiang Y, Takahata K. Enabling angioplasty-ready "smart" stents to detect in-stent restenosis and occlusion. Adv Sci. 2017;5(5):1700560. doi: 10.1002/advs.201700560
  • 54. Chaparro-Rico BDM, Sebastiano F, Cafolla D. A smart stent for monitoring eventual restenosis: Computational fluid dynamic and finite element analysis in descending thoracic aorta. Machines. 2020; 8:81. doi: 10.3390/machines8040081.
  • 55. Hatami H, Almahmeed W, Kesharwani P, Sahebkar A. Exploring the potential of 3D and 4D printing in advancing stent manufacturing for cardiovascular diseases. Eur Polym J. 2024; 212:113035. doi: 10.1016/j.eurpolymj.2024.113035
  • 56. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12(7):4250-70. doi: 10.3390/ijms12074250
  • 57. Bowen PK, Shearier ER, Zhao S, Guillory RJ 2nd, Zhao F, Goldman J, et al. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys. Adv Healthc Mater. 2016;5(10):1121-1140. doi: 10.1002/adhm.201501019.
  • 58. Hu T, Yang C, Lin S, Yu Q, Wang G. Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives. Mater Sci Eng C Mater Biol Appl. 2018; 91:163-178.
  • 59. Kappe KO, Smorenburg SPM, Hoksbergen AWJ, Wolterink JM, Yeung KK. Deep Learning-Based Intraoperative Stent Graft Segmentation on Completion Digital Subtraction Angiography During Endovascular Aneurysm Repair. J Endovasc Ther. 2023;30(6):822-827. doi: 10.1177/15266028221105840
  • 60. Bagheri AB, Rouzi MD, Koohbanani NA, Mahoor MH, Finco MG, Lee M, Najafi B, Chung J, et al. Potential applications of artificial intelligence and machine learning on diagnosis, treatment, and outcome prediction to address health care disparities of chronic limb-threatening ischemia. Semin Vasc Surg. 2023;36(3):454-459. doi: 10.1053/j.semvascsurg.2023.06.003
  • 61. Fliegenschmidt J, Hulde N, Gedinha Preising M, Ruggeri S, Szymanowsky R, Meesseman L, Sun H, Dahlweid M, von Dossow V, et al. Leveraging artificial intelligence for the management of postoperative delirium following cardiac surgery. Eur J Anaesthesiol Intensive Care. 2022;2(1):e0010. doi: 10.1097/EA9.0000000000000010
There are 61 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Medical Science
Authors

Serpil Şahin 0000-0001-8158-4594

Publication Date October 28, 2025
Submission Date April 2, 2025
Acceptance Date August 5, 2025
Published in Issue Year 2025 Volume: 7 Issue: 3

Cite

Vancouver Şahin S. TECHNOLOGICAL APPLICATIONS IN ENDOVASCULAR INTERVENTIONS. Dent & Med J - R. 2025;7(3):101-16.




"The truest guide for everything in the world, for civilization, for life, for success, is science. Seeking a guide outside of science and science is heedlessness, ignorance, and deviating from the right path. It is only necessary to understand the development of science and science in every minute we live and to follow the progress in time. To attempt to apply the rules of science and science a thousand, two thousand, and thousands of years ago, today, after so many thousand years, is, of course, not to be in science and science."
M. Kemal ATATÜRK