Research Article
BibTex RIS Cite

DESIGN AND CONSTRUCTION OF A TEST CABIN FOR MEDICAL APPLICATIONS

Year 2015, Issue: 034, 99 - 110, 15.06.2015

Abstract

A test cabinet for
medical applications has been implemented and constructed according to the
standards. LM35 temperature sensor and SHT11 humidity sensor are used to
measure and control the temperature and humidity variations respectively.
Heating of the cabinet is provided by the resistor heaters placed on the bottom
of the cabinet. Heated water reservoirs are placed at the back of the
resistance for humidity variations. Control system can measure the temperature
variations from 25
oC to 40 oC with an accuracy of ±0.1 oC  and
relative humidity range from 45% to 55% RH with an accuracy of ±5%.The
temperature and humidity variations are received by the PIC microcontroller and
displayed on 16x2 character LCD. The communication between PIC and PC is made
by RS232 port. Data is collected, stored in 12 hours incubation period and
presented on the excel table in 30 second time span.

References

  • [1] A. Kürklü, ve N. Çağlayan, "Sera Otomasyon Sistemlerinin Geliştirilmesine Yönelik Bir Çalışma", Akdeniz Üniv. Ziraat Fak. Dergisi, 18(1), 25-34 (2005).
  • [2] M. Kocatürk, ve M. Salman M. “Otomobil Klima Sisteminde Fan Devri ve Giriş Havası Sıcaklığının Performansa Etkisinin Deneysel Olarak İncelenmesi”, Gazi Üniv. Politeknik Dergisi, 9(1), 28-37 (2006).
  • [3] I. Athanasopoulos, and L.A. Caffarelli, “Continuity of the temperature in boundary heat control problems”, Advances in Mathemathics, 224(1), 293-315 (2010).
  • [4] R. Romani, and L.C. Góes, “Cabin Temperature Control Model for Commercial Aircraft”, AIAA Modeling and Simulation Technologies Conference 2012, 133-139.
  • [5] S. Sanaye, M. Dehghandokht, and A. Fartaj, “Temperature control of a cabin in an automobile using thermal modeling and fuzzy controller”, Applied Energy, 97, 860-868 (2012).
  • [6] N.C. Lemke, J.L. Lemke, and J. Koehler, “Secondary Loop System for Automotiv HVAC Units Under Different Climatic Conditions”, International Refrigeration and Air Conditioning Conference, 2393- 2403,(2012).
  • [7] L.D. Knibbs, R.J. Dear, and L. Morawska,” Effect of Cabin Ventilation Rate on Ultrafine Particle Exposure Inside Automobiles”, Environ. Sci. Technol., 44 (9), 3546–3551 (2010).
  • [8] N. Hudda, E. Kostenidou, C. Sioutas, R.J.Delfino, and S.A. Fruin, “Vehicle and Driving Characteristics That Influence In-Cabin Particle Number Concentrations”, Environ. Sci. Technol., 45 (20), 8691–8697 (2011).
  • [9] S. Wahid, D.R. Cahela, and B.J. Tatarchuk, “Experimental, Theoretical, and Computational Comparison of Pressure Drops Occurring in Pleated Catalyst Structure”, Ind. Eng. Chem. Res., 52 (40),14472–14482 (2013).
  • [10] L.L.W. Mingshan, “Design and Experiment of a Heat Pump Air-conditioning System for Electric Vehicles”, Journal of Refrigeration, 3, 113 -120 (2013).
  • [11] S.H. Au, S.C.C. Shih, and A.R. Wheeler, “Integrated microbioreactor for culture and analysis of bacteria, algae and yeast”, Biomedical Microdevices, 13(1), 41-50 (2011).
  • [12] S.D. Frey, J. Lee, J.M. Melillo, and J. Six, “The temperature response of soil microbial efficiency and its feedback to climate”, Nature Climate Change, 3, 395-398 (2013).
  • [13] International Commission on Microbiological Specifications for Foods, Microbial Ecology of Foods V1: Factors Affecting Life and Death of Micoorganisms, Academic Press, New York, 311 (1980).
  • [14] W. Shen, P.G. Wolf, F. Carbonero, W. Zhong, T. Reid, H.R. Gaskins, and M.K. McIntosh, “Intestinal and Systemic Inflammatory Responses Are Positively Associated with Sulfidogenic Bacteria Abundance in High-Fat–Fed Male C57BL/6J Mice”, American Society for Nutrition – The Journal of Nutrition, 144 (8), 1187 – 1191 (2014).
  • [15] C.H. Park, C.H. Lee, M.D. Guiver, and Y.M. Lee, “Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)”, Progress in Polymer Science, 36(11), 1443–1498 (2011).
  • [16] G:R. Harrod, B.A. Beers, G.E. Carmichael, and J.O. Bentz, “Indoor air quality controllers and user interfaces”, US 8219249 B2, (2012).
  • [17] R.C. Arora, “Refrigeration and Air Conditioning”, PHI Limited, New Delhi, 1987 (2010).
  • [18] G.W. Bahng, and J.D. Lee, “Development of heat-generating polyester fiber harnessing catalytic ceramic powder combined with heat-generating super microorganisms”, Textile Research Journal, doi: 10.1177/0040517513503732, (2014).
  • [19] M.A. Zamani, T.S. Sidhu, and A. Yazdani, “A Protection Strategy and Microprocessor-Based Relay for Low-Voltage Microgrids”, IEEE Transactıons On Power Delıvery, 26(3), 1873 – 1883 (2011).
  • [20] LM35 Precision Centigrade Temperature Sensors, datasheet for LM-35, Texas Instruments Company, SNIS159D –August 1999–Revised (2013).
  • [21] A. Beghi, L. Cecchinato, and M. Rampazzo, “Thermal and Comfort Control for Radiant Heating/Cooling Systems”, IEEE International Conference on Control Applications (CCA) Part of 2011 IEEE Multi-Conference on Systems and Control, 258 – 263, (2011).
  • [22] SHT10,SHT11,SHT15, Datasheet for SHT1x, Sensirion Sensor Company, revised date 17.01.2012.
  • [23] A.İ. Parmak, “Elektrostatik Toz Boya Kaplamanın Avantajları”, Erciyes Üniv. Fen Bilimleri Dergisi, 2, 295 – 298 (1986).
  • [24] Y. Konuklu, “Mikrokapsüllenmiş Faz Değiştiren Maddelerde Termal Enerji Depolama ile Binalarda Enerji Tasarrufu”, Doktora Tezi, Kimya Anabilim Dalı Çukurova Üniv., 172, (2008).

TIBBİ KULLANIM AMAÇLI DENEY KABİNİ TASARIMI VE İMALATI

Year 2015, Issue: 034, 99 - 110, 15.06.2015

Abstract

Bu
çalışmada tıbbi kullanım amaçlı bir deney kabini, uygun
standartlara göre
uygulanmış
ve inşa edilmiştir.
LM35 sıcaklık sensörü ve SHT11 nem sensörü sırasıyla sıcaklık ve nem
değişikliklerinin ölçümü ve kontrolünde kullanılmıştır. Kabin ısısı, rezistans
ısıtıcının kabinin tabanına yerleştirilmesi ile sağlanır. Su haznesi nem
değişimleri için rezistansın arkasına yerleştirilir. Kontrol sistemi sıcaklık değişimlerini 25 oC ile 40 oC aralığında ±0.1 % doğrulukla, bağıl nemi 45 ile 55
% RH aralığında ±5% doğrulukla ölçebilmektedir. Sıcaklık
ve nem değişimleri
PIC mikro denetleyici tarafından alınmakta ve 16x2 karakter LCD
ekranda
görüntülenmektedir. PIC ve bilgisayar
arasındaki iletişim RS232 port ile sağlanmaktadır. Veri toplanıp, 12 saatlik
bir inkübasyon periyodu boyunca depolanmakta ve 30 saniyelik zaman sürecinde
excel tablosunda sunulmaktadır.

References

  • [1] A. Kürklü, ve N. Çağlayan, "Sera Otomasyon Sistemlerinin Geliştirilmesine Yönelik Bir Çalışma", Akdeniz Üniv. Ziraat Fak. Dergisi, 18(1), 25-34 (2005).
  • [2] M. Kocatürk, ve M. Salman M. “Otomobil Klima Sisteminde Fan Devri ve Giriş Havası Sıcaklığının Performansa Etkisinin Deneysel Olarak İncelenmesi”, Gazi Üniv. Politeknik Dergisi, 9(1), 28-37 (2006).
  • [3] I. Athanasopoulos, and L.A. Caffarelli, “Continuity of the temperature in boundary heat control problems”, Advances in Mathemathics, 224(1), 293-315 (2010).
  • [4] R. Romani, and L.C. Góes, “Cabin Temperature Control Model for Commercial Aircraft”, AIAA Modeling and Simulation Technologies Conference 2012, 133-139.
  • [5] S. Sanaye, M. Dehghandokht, and A. Fartaj, “Temperature control of a cabin in an automobile using thermal modeling and fuzzy controller”, Applied Energy, 97, 860-868 (2012).
  • [6] N.C. Lemke, J.L. Lemke, and J. Koehler, “Secondary Loop System for Automotiv HVAC Units Under Different Climatic Conditions”, International Refrigeration and Air Conditioning Conference, 2393- 2403,(2012).
  • [7] L.D. Knibbs, R.J. Dear, and L. Morawska,” Effect of Cabin Ventilation Rate on Ultrafine Particle Exposure Inside Automobiles”, Environ. Sci. Technol., 44 (9), 3546–3551 (2010).
  • [8] N. Hudda, E. Kostenidou, C. Sioutas, R.J.Delfino, and S.A. Fruin, “Vehicle and Driving Characteristics That Influence In-Cabin Particle Number Concentrations”, Environ. Sci. Technol., 45 (20), 8691–8697 (2011).
  • [9] S. Wahid, D.R. Cahela, and B.J. Tatarchuk, “Experimental, Theoretical, and Computational Comparison of Pressure Drops Occurring in Pleated Catalyst Structure”, Ind. Eng. Chem. Res., 52 (40),14472–14482 (2013).
  • [10] L.L.W. Mingshan, “Design and Experiment of a Heat Pump Air-conditioning System for Electric Vehicles”, Journal of Refrigeration, 3, 113 -120 (2013).
  • [11] S.H. Au, S.C.C. Shih, and A.R. Wheeler, “Integrated microbioreactor for culture and analysis of bacteria, algae and yeast”, Biomedical Microdevices, 13(1), 41-50 (2011).
  • [12] S.D. Frey, J. Lee, J.M. Melillo, and J. Six, “The temperature response of soil microbial efficiency and its feedback to climate”, Nature Climate Change, 3, 395-398 (2013).
  • [13] International Commission on Microbiological Specifications for Foods, Microbial Ecology of Foods V1: Factors Affecting Life and Death of Micoorganisms, Academic Press, New York, 311 (1980).
  • [14] W. Shen, P.G. Wolf, F. Carbonero, W. Zhong, T. Reid, H.R. Gaskins, and M.K. McIntosh, “Intestinal and Systemic Inflammatory Responses Are Positively Associated with Sulfidogenic Bacteria Abundance in High-Fat–Fed Male C57BL/6J Mice”, American Society for Nutrition – The Journal of Nutrition, 144 (8), 1187 – 1191 (2014).
  • [15] C.H. Park, C.H. Lee, M.D. Guiver, and Y.M. Lee, “Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)”, Progress in Polymer Science, 36(11), 1443–1498 (2011).
  • [16] G:R. Harrod, B.A. Beers, G.E. Carmichael, and J.O. Bentz, “Indoor air quality controllers and user interfaces”, US 8219249 B2, (2012).
  • [17] R.C. Arora, “Refrigeration and Air Conditioning”, PHI Limited, New Delhi, 1987 (2010).
  • [18] G.W. Bahng, and J.D. Lee, “Development of heat-generating polyester fiber harnessing catalytic ceramic powder combined with heat-generating super microorganisms”, Textile Research Journal, doi: 10.1177/0040517513503732, (2014).
  • [19] M.A. Zamani, T.S. Sidhu, and A. Yazdani, “A Protection Strategy and Microprocessor-Based Relay for Low-Voltage Microgrids”, IEEE Transactıons On Power Delıvery, 26(3), 1873 – 1883 (2011).
  • [20] LM35 Precision Centigrade Temperature Sensors, datasheet for LM-35, Texas Instruments Company, SNIS159D –August 1999–Revised (2013).
  • [21] A. Beghi, L. Cecchinato, and M. Rampazzo, “Thermal and Comfort Control for Radiant Heating/Cooling Systems”, IEEE International Conference on Control Applications (CCA) Part of 2011 IEEE Multi-Conference on Systems and Control, 258 – 263, (2011).
  • [22] SHT10,SHT11,SHT15, Datasheet for SHT1x, Sensirion Sensor Company, revised date 17.01.2012.
  • [23] A.İ. Parmak, “Elektrostatik Toz Boya Kaplamanın Avantajları”, Erciyes Üniv. Fen Bilimleri Dergisi, 2, 295 – 298 (1986).
  • [24] Y. Konuklu, “Mikrokapsüllenmiş Faz Değiştiren Maddelerde Termal Enerji Depolama ile Binalarda Enerji Tasarrufu”, Doktora Tezi, Kimya Anabilim Dalı Çukurova Üniv., 172, (2008).
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Onur Koçak

Mehmet Cüneyt Şen This is me

Erdi Arslan This is me

Arif Koçoğlu This is me

Publication Date June 15, 2015
Published in Issue Year 2015 Issue: 034

Cite

APA Koçak, O., Şen, M. C., Arslan, E., Koçoğlu, A. (2015). TIBBİ KULLANIM AMAÇLI DENEY KABİNİ TASARIMI VE İMALATI. Journal of Science and Technology of Dumlupınar University(034), 99-110.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.