Research Article
BibTex RIS Cite

QUADRATIC BEHAVIOR OF Ft VALUES OF SUPERALLOWED FERMI BETA DECAYS

Year 2013, Issue: 031, 27 - 38, 15.08.2013

Abstract

In the present work, quadratic behavior of Ft values of the superalloved 0 0 Fermi beta transitions have been investigated by on the eleven well known superallowed Fermi Beta decays; the parent nuclei are 10C, 14O, 26Al, 34Cl, 38K, 42Sc, 46V, 50Mn, 54Co, 62Ga, 74Rb. Broken isospin symmetry of shell model Hamiltonian has been restored by Pyatov method. Within the Random Phase Approximation (RPA), calculations have been performed considering without and with pairing interactions.

References

  • [1] Blin-Stoyle R J., “Isospin In Nuclear Physics”, edited by Wilkinson D H., Amsterdam: North-Holland, 115-172 (1969).
  • [2] I.S. Towner and J.C. Hardy, “Superallowed 0+->0+ nuclear β-decays”, Nucl. Phys. A, 205, 33 (1973).
  • [3] D.H. Wilkinson, “The mismatch problem in super-allowed Fermi β-decay”, Phys. Lett., 65 B, 9 (1976).
  • [4] J.C. Hardy and I.S. Towner, “Superallowed 0+->0+ nuclear β-decays and Cabibbo universality”, Nucl. Phys. A, 254, 221 (1975).
  • [5] I.S. Towner, J.C. Hardy, and M. Harvey, “Analogue symmetry breaking in superallowed fermi β- decay”, Nucl. Phys. A, 284, 269 (1977).
  • [6] W.E. Ormand and B.A. Brown, “Corrections to the Fermi Matrix Element for Superallowed β Decay”, Phys. Rev. Lett., 62, 866 (1989).
  • [7] F.C. Barker, “On the nuclear-mismatch correction for superallowed 0+->0+ beta decays”, Nucl. Phys. A, 537, 134 (1992).
  • [8] F.C. Barker, “Calculated values of the nuclear-mismatch correction for superallowed 0+->0+ beta decays”, Nucl. Phys. A, 579, 62 (1994).
  • [9] D.H. Wilkinson, “Methodology for superallowed Fermi beta-decay Part III”, Nucl. Instr. and Meth. A, 335, 201 (1993).
  • [10] W.E. Ormand and B.A. Brown, “Isospin-mixing corrections for fp-shell Fermi transitions”, Phys. Rev. C, 52, 2455 (1995).
  • [11] H. Sagawa, N. Van Giai, and T. Suzuki, “Effect of isospin mixing on superallowed Fermi β decay”, Phys. Rev. C, 53, 2163 (1996).
  • [12] P. Navrátil, B.R. Barrett, and W.E. Ormand, “Large-basis shell-model calculation of the 10C→10B Fermi matrix element”, Phys. Rev. C, 56, 2542 (1997).
  • [13] D.H. Wilkinson, “Super-allowed Fermi beta-decay revisited”, Nucl. Instr. and Meth. A, 488, 654 (2002).
  • [14] I.S. Towner and J.C. Hardy, “Calculated corrections to superallowed Fermi β decay: New evaluation of the nuclear-structure-dependent terms”, Phys. Rev. C, 66, 035501 (2002).
  • [15] N. Cabibbo, “Unitary Symmetry and Leptonic Decays”, Phys. Rev. Lett., 10, 531 (1963).
  • [16] M. Kobayashi and T. Maskawa, “CP-Violation in the Renormalizable Theory of Weak Interaction”, Prog. Theor. Phys., 49, 652 (1973).
  • [17] J. C. Hardy and I. S. Towner, “Superallowed 0+→0+ nuclear β decays: A critical survey with tests of the conserved vector current hypothesis and the standard model”, Phys. Rev. C, 71, 055501 (2005).
  • [18] D.H. Wilkinson, “Evaluation of GV and GA; CKM unitarity”, Nucl. Instr. and Meth. A, 495, 65 (2002).
  • [19] D.H. Wilkinson, “Super-allowed Fermi beta-decay: CKM unitarity”, J. Phys. G, 29, 189 (2003).
  • [20] D.H. Wilkinson, “Super-allowed Fermi beta-decay: a further visit”, Nucl. Instr. and Meth. A, 526, 386 (2004).
  • [21] D.H. Wilkinson, “Super-allowed Fermi beta-decay”, Nucl. Instr. and Meth. A, 543, 497 (2005).
  • [22] D.H. Wilkinson, “Super-allowed Fermi beta-decay: Unitarity of the CKM matrix”, Nucl. Instr. and Meth. A, 555, 457 (2005).
  • [23] N. I. Pyatov and D. I. Salamov, “Conservation laws and collective exciations in nuclei”, Nukleonika, 22, 127 (1977).
  • [24] N. I. Pyatov et al, “Self-consistent theory of Coulomb isospin mixing in nuclei”, Sov. J. Nucl. Phys., 29, 10 (1979). [25] T. Babacan et al, “The effect of the pairing interaction on the energies of isobar analogue resonances in 112–124Sb and isospin admixture in 100–124Sn isotopes”, J. Phys. G, 30, 759 (2004).
  • [26] A. Küçükbursa, D. I. Salamov, T. Babacan and H.A. Aygör, “An investigation of the influence of the pairing correlations on the properties of the isobar analog resonances in A=208 nuclei”, Pramana, 63, 947 (2004).
  • [27] T. Babacan, D. I. Salamov, and A. Küçük bursa, “Gamow-Teller 1+ states 208Bi.”, Phys. Rev. C, 71, 037303 (2005).
  • [28] D. I. Salamov et al, “The isospin admixture of the ground state and the properties of the isobar resonances in medium and heavy nuclei”, Pramana, 66, 1105 (2006).
  • [29] D. I. Salamov, S. Ünlü, and N. Çakmak, “Beta-transition properties for neutron-rich Sn and Te isotopes by Pyatov method”, Pramana, 69, 369 (2007).
  • [30] T. Babacan, D. I. Salamov, and A. Küçük bursa, “Self-consistent calculations of isospin admixtures in the ground states of the N=Z nuclei in the mass region of 50–100” Nucl. Phys. A, 788, 279 (2007).
  • [31] N. Çakmak, S. Ünlü, and C. Selam, “Low-lying Gamow-Teller transitions in spherical nuclei”, Phys. Atom. Nucl., 75, 8 (2012) [Yad. Fiz., 75, 10 (2012)].
  • [32] N. Çakmak, S. Ünlü, and C. Selam, “Gamow-Teller 1+ states in 112-124Sb isotopes”, Pramana, 75, 649 (2010).
  • [33] N. Çakmak, S. Ünlü, K. Manisa and C. Selam, “The investigation of 0+<--> 0– beta decay in some spherical nuclei”, Pramana, 74, 541 (2010).
  • [34] A. E. Çalık, M. Gerçeklioğlu, and D. I. Salamov, “Superallowed Fermi beta decay and the unitarity of the Cabibbo-Kobayashi-Maskawa Matrix”, Z. Naturforsch., 64 a, 865 (2009).
  • [35] A. E. Çalık, M. Gerçeklioğlu, and C. Selam, “The ınfluence of paırıng correlatıons on the ısospın symmetry breakıng correctıons of superallowed fermı beta decays”, Phys. Atom. Nucl., 76, (2013) [Yad. Fiz., 76, (2013)]. DOI: 10.7868/S004400271304003X
  • [36] A. E. Çalık, M. Gerçeklioğlu, and D. I. Salamov, “The isospin mixing and the superallowe Fermi beta decay”, Pramana, 79, 417 (2012).
  • [37] V. G. Soloviev, “Theory of Complex Nuclei”, New York: Pergamon, (1976).
  • [38] I.S. Towner and J.C. Hardy, “Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay”, Phys. Rev. C, 77, 025501 (2008).
  • [39] I.S. Towner and J.C. Hardy, “The evaluation of Vud, experiment and theory”, J. Phys.G, 29, 197 (2003).

SÜPERİZİNLİ FERMİ BETA GEÇİŞLERİNİN Ft DEĞERLERİNİN KUADRATİK DAVRANIŞI

Year 2013, Issue: 031, 27 - 38, 15.08.2013

Abstract

Bu çalışmada çok iyi bilinen ve ana çekirdekleri 10C, 14O, 26Al, 34Cl, 38K, 42Sc, 46V, 50Mn, 54Co, 62Ga, 74Rb olan onbir süperizinli 0 0 Fermi beta geçişinin Ft değerlerinin kuadratik davranışı incelenmiştir. Kabuk model Hamiltoniyen’in kırılan izospin simetrisi Pyatov metodu kullanılarak düzeltilmiştir. Hesaplamalar rastgele faz yaklaşımı (RPA) çerçevesinde çift etkileşmeyi dikkate alarak ve almayarak yapılmıştır.

References

  • [1] Blin-Stoyle R J., “Isospin In Nuclear Physics”, edited by Wilkinson D H., Amsterdam: North-Holland, 115-172 (1969).
  • [2] I.S. Towner and J.C. Hardy, “Superallowed 0+->0+ nuclear β-decays”, Nucl. Phys. A, 205, 33 (1973).
  • [3] D.H. Wilkinson, “The mismatch problem in super-allowed Fermi β-decay”, Phys. Lett., 65 B, 9 (1976).
  • [4] J.C. Hardy and I.S. Towner, “Superallowed 0+->0+ nuclear β-decays and Cabibbo universality”, Nucl. Phys. A, 254, 221 (1975).
  • [5] I.S. Towner, J.C. Hardy, and M. Harvey, “Analogue symmetry breaking in superallowed fermi β- decay”, Nucl. Phys. A, 284, 269 (1977).
  • [6] W.E. Ormand and B.A. Brown, “Corrections to the Fermi Matrix Element for Superallowed β Decay”, Phys. Rev. Lett., 62, 866 (1989).
  • [7] F.C. Barker, “On the nuclear-mismatch correction for superallowed 0+->0+ beta decays”, Nucl. Phys. A, 537, 134 (1992).
  • [8] F.C. Barker, “Calculated values of the nuclear-mismatch correction for superallowed 0+->0+ beta decays”, Nucl. Phys. A, 579, 62 (1994).
  • [9] D.H. Wilkinson, “Methodology for superallowed Fermi beta-decay Part III”, Nucl. Instr. and Meth. A, 335, 201 (1993).
  • [10] W.E. Ormand and B.A. Brown, “Isospin-mixing corrections for fp-shell Fermi transitions”, Phys. Rev. C, 52, 2455 (1995).
  • [11] H. Sagawa, N. Van Giai, and T. Suzuki, “Effect of isospin mixing on superallowed Fermi β decay”, Phys. Rev. C, 53, 2163 (1996).
  • [12] P. Navrátil, B.R. Barrett, and W.E. Ormand, “Large-basis shell-model calculation of the 10C→10B Fermi matrix element”, Phys. Rev. C, 56, 2542 (1997).
  • [13] D.H. Wilkinson, “Super-allowed Fermi beta-decay revisited”, Nucl. Instr. and Meth. A, 488, 654 (2002).
  • [14] I.S. Towner and J.C. Hardy, “Calculated corrections to superallowed Fermi β decay: New evaluation of the nuclear-structure-dependent terms”, Phys. Rev. C, 66, 035501 (2002).
  • [15] N. Cabibbo, “Unitary Symmetry and Leptonic Decays”, Phys. Rev. Lett., 10, 531 (1963).
  • [16] M. Kobayashi and T. Maskawa, “CP-Violation in the Renormalizable Theory of Weak Interaction”, Prog. Theor. Phys., 49, 652 (1973).
  • [17] J. C. Hardy and I. S. Towner, “Superallowed 0+→0+ nuclear β decays: A critical survey with tests of the conserved vector current hypothesis and the standard model”, Phys. Rev. C, 71, 055501 (2005).
  • [18] D.H. Wilkinson, “Evaluation of GV and GA; CKM unitarity”, Nucl. Instr. and Meth. A, 495, 65 (2002).
  • [19] D.H. Wilkinson, “Super-allowed Fermi beta-decay: CKM unitarity”, J. Phys. G, 29, 189 (2003).
  • [20] D.H. Wilkinson, “Super-allowed Fermi beta-decay: a further visit”, Nucl. Instr. and Meth. A, 526, 386 (2004).
  • [21] D.H. Wilkinson, “Super-allowed Fermi beta-decay”, Nucl. Instr. and Meth. A, 543, 497 (2005).
  • [22] D.H. Wilkinson, “Super-allowed Fermi beta-decay: Unitarity of the CKM matrix”, Nucl. Instr. and Meth. A, 555, 457 (2005).
  • [23] N. I. Pyatov and D. I. Salamov, “Conservation laws and collective exciations in nuclei”, Nukleonika, 22, 127 (1977).
  • [24] N. I. Pyatov et al, “Self-consistent theory of Coulomb isospin mixing in nuclei”, Sov. J. Nucl. Phys., 29, 10 (1979). [25] T. Babacan et al, “The effect of the pairing interaction on the energies of isobar analogue resonances in 112–124Sb and isospin admixture in 100–124Sn isotopes”, J. Phys. G, 30, 759 (2004).
  • [26] A. Küçükbursa, D. I. Salamov, T. Babacan and H.A. Aygör, “An investigation of the influence of the pairing correlations on the properties of the isobar analog resonances in A=208 nuclei”, Pramana, 63, 947 (2004).
  • [27] T. Babacan, D. I. Salamov, and A. Küçük bursa, “Gamow-Teller 1+ states 208Bi.”, Phys. Rev. C, 71, 037303 (2005).
  • [28] D. I. Salamov et al, “The isospin admixture of the ground state and the properties of the isobar resonances in medium and heavy nuclei”, Pramana, 66, 1105 (2006).
  • [29] D. I. Salamov, S. Ünlü, and N. Çakmak, “Beta-transition properties for neutron-rich Sn and Te isotopes by Pyatov method”, Pramana, 69, 369 (2007).
  • [30] T. Babacan, D. I. Salamov, and A. Küçük bursa, “Self-consistent calculations of isospin admixtures in the ground states of the N=Z nuclei in the mass region of 50–100” Nucl. Phys. A, 788, 279 (2007).
  • [31] N. Çakmak, S. Ünlü, and C. Selam, “Low-lying Gamow-Teller transitions in spherical nuclei”, Phys. Atom. Nucl., 75, 8 (2012) [Yad. Fiz., 75, 10 (2012)].
  • [32] N. Çakmak, S. Ünlü, and C. Selam, “Gamow-Teller 1+ states in 112-124Sb isotopes”, Pramana, 75, 649 (2010).
  • [33] N. Çakmak, S. Ünlü, K. Manisa and C. Selam, “The investigation of 0+<--> 0– beta decay in some spherical nuclei”, Pramana, 74, 541 (2010).
  • [34] A. E. Çalık, M. Gerçeklioğlu, and D. I. Salamov, “Superallowed Fermi beta decay and the unitarity of the Cabibbo-Kobayashi-Maskawa Matrix”, Z. Naturforsch., 64 a, 865 (2009).
  • [35] A. E. Çalık, M. Gerçeklioğlu, and C. Selam, “The ınfluence of paırıng correlatıons on the ısospın symmetry breakıng correctıons of superallowed fermı beta decays”, Phys. Atom. Nucl., 76, (2013) [Yad. Fiz., 76, (2013)]. DOI: 10.7868/S004400271304003X
  • [36] A. E. Çalık, M. Gerçeklioğlu, and D. I. Salamov, “The isospin mixing and the superallowe Fermi beta decay”, Pramana, 79, 417 (2012).
  • [37] V. G. Soloviev, “Theory of Complex Nuclei”, New York: Pergamon, (1976).
  • [38] I.S. Towner and J.C. Hardy, “Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay”, Phys. Rev. C, 77, 025501 (2008).
  • [39] I.S. Towner and J.C. Hardy, “The evaluation of Vud, experiment and theory”, J. Phys.G, 29, 197 (2003).
There are 38 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Articles
Authors

Abdullah Engin Çalık This is me

Publication Date August 15, 2013
Published in Issue Year 2013 Issue: 031

Cite

APA Çalık, A. E. (2013). QUADRATIC BEHAVIOR OF Ft VALUES OF SUPERALLOWED FERMI BETA DECAYS. Journal of Science and Technology of Dumlupınar University(031), 27-38.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.