Research Article
BibTex RIS Cite

FUZZY MODELLING APPROACH AND APPLICATIONS

Year 2005, Issue: 009, 77 - 92, 15.12.2005

Abstract

Since ages uncertainty analysis and its modelling have been studied by several researchers. In this topic various approaches were developed. Fuzzy logic is a technique which is used to solve problems including uncertainty. In this study, some models have been developed for different problems related to various topics. The models were taken into consideration by closed loop system control and decision analysis. In the example of the traffic signal control modelling among the developed models, a comparison was made between the fuzzy control modelling and conventional modelling. At the end of the comparison, it has been underlined that the fuzzy logic is better approach than the classical modelling for problems involving certain amount of uncertainity. In the modelling of a house heating system, a multicriteria evaluation problem was dealt with the use of fuzzy modelling and easily decided to be which one of the best system. Yet, a system was designed which produces nearly natural yoghurt with the consideration of fuzzy logic model of yoghurt making. Thus, a model which is easier to be use and able produce in a shorter time than the conventional approach was developed.

References

  • [1] Zadeh, L.A., 1965. Fuzzy Sets. Information and Control, Vol. 8, No.3.
  • [2] Kosko, B., 1994. Fuzzy Thinking, Harper Collins Publishers, 318 p.
  • [3] Mei, F.; Man, Z. and Nguyen, T, 2001, Fuzzy modelling and tracking control of nonlinear systems, Mathematical and Computer Modelling, Vol. 33, pp. 759-770.
  • [4] Cao, S.G.; Rees, N.W. and Feng, G., 1997, Analysis and design for a class of complex control systems-Part I: Fuzzy modeling and identification, Automatica, Vol. 33, No. 6, pp. 1017-1028.
  • [5] Şen, Z., 2001, Bulanık Mantık ve Modelleme İlkeleri, ISBN: 9758509233, 172 sayfa, Bilge Kültür Sanat Yayınevi, İstanbul.
  • [6] Murat, Y.Ş., 2001, Sinyalize Kavşaklarda Bulanık Mantık Tekniği ile Trafik Uyumlu Sinyal Devre Modeli. Doktora Tez çalışması, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul, Temmuz 2001, 198 s.
  • [7] Hwang, H.S., 1999, Automatic design of fuzzy rule base for modelling and control using evolutionary programming, IEE Proceedings - Control Theory and Applications, Vol. 146, n.1, pp. 9-16.
  • [8] McCoy, M.S. and Levary, R.R., 2000, A rule-based pilot performance model, International Journal of Systems Science, Vol. 31, n. 6, pp. 713- 729
  • [9] Hongxing, L.; Jiayin, W and Zhihong, M., 2002, Modelling on fuzzy control systems, Science in China, Series A (Mathematics, Physics, Astronomy), Vol. 45, n 12, pp 1506-17.
  • [10] Majura F. Selekwa and Emmanuel G. Collins, Jr., 2005, Numerical solutions for systems of qualitative nonlinear algebraic equations by fuzzy logic, Fuzzy Sets and Systems, Volume 150, Issue 3, pp 599-609, 2005
  • [11] Liu, J.; Yang, J.; Wang, J. and Sii, H.S.,2005, Engineering System Safety Analysis and Synthesis Using the Fuzzy Rule-based Evidential Reasoning Approach, Quality and Reliability Engineering International, Vol. 21 pp. 387–411
  • [12] Kratmuller, M. and Murgas, 2004, J. Fuzzy modelling and adaptive control of uncertain system, Journal of Electrical Engineering, vol. 55, n 9-10, pp 251-5.
  • [13] Zimmerman, H.J., 1990, Fuzzy Set Theory and Its Applications. Kluwer Ac. Publishing, 400p.
  • [14] Ross, T., 1995, Fuzzy Logic with Engineering Applications, McGraw-Hill Inc., ISBN 0-07-053917-0.
  • [15] Kaynak, O. ve Armağan, G., 1992. Süreç Denetiminde Yeni bir Yaklaşım: Bulanık Mantık, Otomasyon Dergisi, Temmuz-Ağustos 1992 sayısı, sayfa 74-82.
  • [16] Şen, Z., 1998, Fuzzy algorithm for estimation of solar irradiation from sunshine duration, Solar Energy, Volume 63, Issue 1, pp 39-49
  • [17] Nabiyev, V.V., 2005, Yapay Zeka, Problemler-Yöntemler-Algoritmalar, Seçkin Yayıncılık, ISBN: 975 347 98 59, 764 s.
  • [18] Elmas, Ç., 2003, Bulanık Mantık Denetleyiciler, Seçkin Yayıncılık, ISBN: 975 347 613 2, 230 s.
  • [19] Özkan, M.M., 2003, Bulanık Hedef Programlama, Ekin Kitabevi, ISBN: 975 73 38 958, 288 s., Bursa
  • [20] Saaty, T.L., 1985, Analytical Planning, RWS Publications.
  • [21] Pappis, C.P. and Mamdani, E.H., 1977, A Fuzzy Logic Controller for a Traffic Junction, IEEE Transactions on Systems, Man and Cybernetics, pp 707-717.
  • [22] Nakatsuyama, M., Nagahashi, H., and Nishizuka, N., 1984. Fuzzy Logic Phase Controller for Traffic Junctions in the One-way Arterial Road, IFAC-World Congress, preprints, Budapest 1984, pp13-18.
  • [23] Niittymaki, Jarkko, P., 1997, Isolated Traffic Signals-Vehicle Dynamics and Fuzzy Control, Ph.D. Thesis, Helsinki University of Technology, Civil and Environmental Engineering.
  • [24] Murat, Y.Ş. & E. Gedizlioğlu, 2005, A fuzzy logic multi-phased signal control model for isolated junctions. Transportation Research Part C: Emerging Technologies, Vol. 13/1,pp 19-36.
  • [25] Babuska, R., 1998, Fuzzy modelling for Control, Kluwer Academic Publisher.

BULANIK MODELLEME YAKLAŞIMI VE UYGULAMALARI

Year 2005, Issue: 009, 77 - 92, 15.12.2005

Abstract

Belirsizlik analizi ve modellemesi kimi araştırmacılar tarafından yıllardan beri çalışılmaktadır. Bu konuda çeşitli yaklaşımlar geliştirilmiştir. Bulanık mantık, belirsizlik içeren problemlerin çözümünde kullanılan bir yöntemdir. Bu çalışmada, çeşitli konulardaki problemler için bazı modeller geliştirilmiştir. Bu modeller, karar analizi ve kapalı çevrimli sistem denetimindeki problemlere özgü olarak tasarlanmıştır. Geliştirilen modellerden trafik sinyal denetimi örneğinde klasik modelleme ile bulanık denetimli modelleme arasında bir karşılaştırma yapılmış ve yapılan bu çalışma sonucunda belli dereceye kadar belirsizlik içeren problemlerin çözümünde bulanık mantığın klasik mantıktan daha iyi bir yaklaşım olduğunun altı çizilmiştir. Bina Kalorifer sistemi seçimi modelinde çok ölçütlü değerlendirme problemi bulanık modelleme ile ele alınmış ve en uygun sistem seçimi kararı kolayca verilmiştir. Ayrıca bulanık mantık yoğurt üretimi modeli ile doğala en yakın yoğurt üretim sistemi tasarlanmış ve geleneksel üretim sistemine göre daha kolay ve daha hızlı biçimde üretim yapabilecek bir model geliştirilmiştir.

References

  • [1] Zadeh, L.A., 1965. Fuzzy Sets. Information and Control, Vol. 8, No.3.
  • [2] Kosko, B., 1994. Fuzzy Thinking, Harper Collins Publishers, 318 p.
  • [3] Mei, F.; Man, Z. and Nguyen, T, 2001, Fuzzy modelling and tracking control of nonlinear systems, Mathematical and Computer Modelling, Vol. 33, pp. 759-770.
  • [4] Cao, S.G.; Rees, N.W. and Feng, G., 1997, Analysis and design for a class of complex control systems-Part I: Fuzzy modeling and identification, Automatica, Vol. 33, No. 6, pp. 1017-1028.
  • [5] Şen, Z., 2001, Bulanık Mantık ve Modelleme İlkeleri, ISBN: 9758509233, 172 sayfa, Bilge Kültür Sanat Yayınevi, İstanbul.
  • [6] Murat, Y.Ş., 2001, Sinyalize Kavşaklarda Bulanık Mantık Tekniği ile Trafik Uyumlu Sinyal Devre Modeli. Doktora Tez çalışması, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul, Temmuz 2001, 198 s.
  • [7] Hwang, H.S., 1999, Automatic design of fuzzy rule base for modelling and control using evolutionary programming, IEE Proceedings - Control Theory and Applications, Vol. 146, n.1, pp. 9-16.
  • [8] McCoy, M.S. and Levary, R.R., 2000, A rule-based pilot performance model, International Journal of Systems Science, Vol. 31, n. 6, pp. 713- 729
  • [9] Hongxing, L.; Jiayin, W and Zhihong, M., 2002, Modelling on fuzzy control systems, Science in China, Series A (Mathematics, Physics, Astronomy), Vol. 45, n 12, pp 1506-17.
  • [10] Majura F. Selekwa and Emmanuel G. Collins, Jr., 2005, Numerical solutions for systems of qualitative nonlinear algebraic equations by fuzzy logic, Fuzzy Sets and Systems, Volume 150, Issue 3, pp 599-609, 2005
  • [11] Liu, J.; Yang, J.; Wang, J. and Sii, H.S.,2005, Engineering System Safety Analysis and Synthesis Using the Fuzzy Rule-based Evidential Reasoning Approach, Quality and Reliability Engineering International, Vol. 21 pp. 387–411
  • [12] Kratmuller, M. and Murgas, 2004, J. Fuzzy modelling and adaptive control of uncertain system, Journal of Electrical Engineering, vol. 55, n 9-10, pp 251-5.
  • [13] Zimmerman, H.J., 1990, Fuzzy Set Theory and Its Applications. Kluwer Ac. Publishing, 400p.
  • [14] Ross, T., 1995, Fuzzy Logic with Engineering Applications, McGraw-Hill Inc., ISBN 0-07-053917-0.
  • [15] Kaynak, O. ve Armağan, G., 1992. Süreç Denetiminde Yeni bir Yaklaşım: Bulanık Mantık, Otomasyon Dergisi, Temmuz-Ağustos 1992 sayısı, sayfa 74-82.
  • [16] Şen, Z., 1998, Fuzzy algorithm for estimation of solar irradiation from sunshine duration, Solar Energy, Volume 63, Issue 1, pp 39-49
  • [17] Nabiyev, V.V., 2005, Yapay Zeka, Problemler-Yöntemler-Algoritmalar, Seçkin Yayıncılık, ISBN: 975 347 98 59, 764 s.
  • [18] Elmas, Ç., 2003, Bulanık Mantık Denetleyiciler, Seçkin Yayıncılık, ISBN: 975 347 613 2, 230 s.
  • [19] Özkan, M.M., 2003, Bulanık Hedef Programlama, Ekin Kitabevi, ISBN: 975 73 38 958, 288 s., Bursa
  • [20] Saaty, T.L., 1985, Analytical Planning, RWS Publications.
  • [21] Pappis, C.P. and Mamdani, E.H., 1977, A Fuzzy Logic Controller for a Traffic Junction, IEEE Transactions on Systems, Man and Cybernetics, pp 707-717.
  • [22] Nakatsuyama, M., Nagahashi, H., and Nishizuka, N., 1984. Fuzzy Logic Phase Controller for Traffic Junctions in the One-way Arterial Road, IFAC-World Congress, preprints, Budapest 1984, pp13-18.
  • [23] Niittymaki, Jarkko, P., 1997, Isolated Traffic Signals-Vehicle Dynamics and Fuzzy Control, Ph.D. Thesis, Helsinki University of Technology, Civil and Environmental Engineering.
  • [24] Murat, Y.Ş. & E. Gedizlioğlu, 2005, A fuzzy logic multi-phased signal control model for isolated junctions. Transportation Research Part C: Emerging Technologies, Vol. 13/1,pp 19-36.
  • [25] Babuska, R., 1998, Fuzzy modelling for Control, Kluwer Academic Publisher.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section Articles
Authors

M. Sarı This is me

Y.Ş. Murat This is me

M. Kırabalı This is me

Publication Date December 15, 2005
Published in Issue Year 2005 Issue: 009

Cite

APA Sarı, M., Murat, Y., & Kırabalı, M. (2005). BULANIK MODELLEME YAKLAŞIMI VE UYGULAMALARI. Journal of Science and Technology of Dumlupınar University(009), 77-92.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.