ASSESSMENT OF ANTIMICROBIAL ACTIVITY ON THE SKIN SECRETIONS OF NINE ANURAN SPECIES FROM TURKEY
Year 2019,
Issue: 043, 43 - 52, 31.12.2019
Dilek Akyıl
,
Arzu Özkara
,
Uğur Cengiz Erişmiş
Abstract
A dramatic decline of amphibians was reported for the first time about 40 years ago and then, this decline has continued at an alarming rate. Nearly one-third (32%), or 6593 amphibian species are threatened according to the most recent 2008 global assessment. Since 1980, the population size of at least 43% of amphibian species is declining and 122 amphibian species have become extinct. The causes of this declines are likely to be complex. Amphibians, like higher vertebrates, have immune systems including both adaptive and innate immunity. Innate immunity has different mechanisms that can provide an instant response nonspecifically to many pathogens. Antimicrobial peptides are the first step in these mechanisms. As each frog species has its own unique peptides, significant variation obtains among species in the number, structure and antimicrobial activity of these peptides. In our knowledge, there is no study previously performed in our country on the amphibian immune system. This study aims to evaluate the skin secretions of the nine anuran species and antimicrobial activity.
References
- [1] Rollins-Smith, L. A, Doersam J. K, Longcore J. E, Taylor S. K, Shamblin J. C, Carey C. and Zasloff M. A., (2002), Antimicrobial peptide defenses against pathogens associated with global amphibian declines, Developmental- Comparative Immunology, 26(1), 63-72.
- [2] Clarke, B.T., (1997), The natural history of amphibian skin secretion, their normal functioning and potentialmedical applications, Biological Reviews, 72, 365-379.
- [3] Barra, D. and Simmaco. M., (1995), Amphibian skin: a promising resource for antimicrobial peptides, Trends Biotechnology, 13, 205- 209.
- [4] Guo, W., Ao, M., Li, W., Wang, J., Yu, L. and Naturforsch, Z., (2012), Major biological activities of the skin secretion of the chinese giant salamander, Andrias davidianus, Zeitschrift fur Naturforsehung C. Journal of Biosciences, 67, 86-92.
- [5] Gomes, A., Giri, B., Saha, A., Mishra, R., Dasgupta, S. C., Debnath, A. and Gomes, A., (2007), Bioactive molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development, Indian Journal of Experimental Biology, 45, 579-593.
- [6] Siano, A., Gatti, P. I., Imaz, M. S., Zerbini, E., Simonetta, A. C., Lajmanovich, R. and Tonarelli, G. G., (2014), A comparative study of the biological activity of skin and granular gland secretions of Leptodactylus latrans and Hypsiboas pulchellus from Argentina, Records of Natural Products, 8, 128-135.
- [7] Libério, M., Bastos, I. M. D., Junior, O. R. P., Fontes, W., Santana, J. M. and Mariana, S. C., (2014), The crude skin secretion of the pepper frog Leptodactylus labyrinthicus is rich in metallo and serine peptidases, Plos one, https://doi.org/10.1371/journal.pone.0096893.
- [8] Artika, I. M., Pinontoan, S. and Kusrini, M. D., (2015), Antibacterial activity of skin secretion of bleeding toad Leptophryne cruentata and Javan tree frog Rhacophorus margaritifer, American Journal of Biochem Biotechnology, 11(3), 127-131.
- [9] Stebbins, R. C. and Cohen, N. W., (1995), A natural history of amphibians, Princeton University Press, New Jersey.
- [10] Apponyi, M. A., Pukala, T. L., Brinkworth, C. S., Maselli, V. M., Bowie, J. H., Tyler, M. J., Booker, G. W., Wallace, J. C., Carver, J. A., Separovic, F., Doyle, J. and Llewellyn, L. E., (2004), Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance, Peptides, 25, 1035-1054.
- [11] Daly, J. W., Spande, T. F. and Garraffo, H. M., (2005), Alkaloids from amphibian skin: a tabulation of over eighthundred compounds, Journal of Natural Products, 68, 1556- 1575.
- [12] Giangaspero, A., Sandri, L. and Tossi, A., (2001), Amphipathic alpha helical antimicrobial peptides, European Journal of Biochemistry, 268, 5589- 5600.
- [13] Woodley, S. K., (2010), Pheromonal communication in amphibians, Journal of Comparative Physiology A, Neuroethology, Sensory, Neural and Behavioral Physiology, 196, 713-727.
- [14] Calderon, L. A., Silva, A. A. E., Ciancaglini, P. and Guerino, S. R., (2011), Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications, Amino Acids, 40, 29–49.
- [15] Ueki, N., Someya, K., Matsuo, Y., Wakamatsu, K. and Mukai, H., (2007), Cryptides: functional cryptic peptides hidden in protein structures, Biopolymers, 88, 190–198.
- [16] Devine, D. A., (2003), Antimicrobial peptides in defence of the oral and respiratory tracts, Molecular Immunology, 40, 431–443.
- [17] Levy, O., (2004), Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes, Journal of Leukocyte Biology, 76, 909–25.
- [18] Marshall, S. H. and Arenas, G., (2003), Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology, Electronic Journal of Biotechnology, 6, 271–84.
- [19] Zhou, M., Chen, T., Walker, B. and Shaw, C., (2006), Pelophylaxins: Novel antimicrobial peptide homologs from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyifukienensis Identification by ‘‘shotgun’’ cDNA cloning and sequence analysis, Peptides, 27(1), 36-41.
- [20] Afsar, B., Afsar, M. and Kalyoncu, F., (2011), Antimicrobial activity in the skin secretion of brownfrog, Rana macrocnemis (Boulenger, 1885) collectedfrom Turkey, Scientific Research and Essays, 6(5), 1001-1004.
- [21] Oskay, M. and Sarı, D., (2007), Antimicrobial screening of some Turkish medicinal plants, Pharmaceutical Biology, 45, 176-181.
- [22] Solak, M. H., Kalmis, E., Saglam, H. and Kalyoncu, F., (2006), Antimicrobial activity of two wild mushrooms Clitocybe alexandri (Gill.) Konr. and Rhizopogon roseolus (Corda) T.M. Fries collected from Turkey, Phytotherapy Research, 20, 1085-1087.
- [23] Collins, C. M., Lyne, P. M. and Grange, J. M., (1989), Microbiological Methods, Six Edition, Butterworths & Co Ltd London, p. 416. [24] Rinaldi, A.C., (2002), Antimicrobial peptides from amphibian skin: an expanding scenario, Current Opinion in Chemical Biology, 6, 799–804.
- [25] Simmaco, M., Kreil, G., Barra D., (2009), Bombinins, antimicrobial peptides from Bombina species, Biochimica et Biophysica Acta, 1788, 1551–1555.
- [26] Dülger, B., Ugurtas, I. H., Sevinc, M., (2004), Antimicrobial activity in the skin secretion of Bufo viridis (Laurenti, 1768), Asiatic Herpetology Research, 10, 161-163.
- [27] Park, C. B, Kim, M. S., Kim, S. C., (1996), A Novel Antimicrobial peptide from Bufo bufo gargarizans, Biochemical and Biophysic Research Community, 218, 408–413.
- [28] Conlon, J. M., (2008), Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae, Peptides, 29, 1815–1819.
- [29] Cevikbas A., (1978), Antibacterial activity in the skin secretion of the frog Rana ridibunda, Toxicon, 16, 195-197.
- [30] Cetin, T. E., Gurler, N., (1989), Bakterilerin antibiyotiklere duyarlilik deneyinin yapılması, Kukem, 12, 2-5.
- [31] Boman, H. G., (1991), Antibacterial peptides: key components needed in immunity, Cell, 65(2), 205–207.
TÜRKİYE’DEN DOKUZ ANURA TÜRÜNÜN DERİ SEKRESYONLARININ ANTİMİKROBİYAL AKTİVİTESİNİN DEĞERLENDİRİLMESİ
Year 2019,
Issue: 043, 43 - 52, 31.12.2019
Dilek Akyıl
,
Arzu Özkara
,
Uğur Cengiz Erişmiş
Abstract
İlk kez yaklaşık kırk yıl önce amfibilerde dramatik bir azalma rapor edilmiş ve bu düşüş endişe verici bir oranda devam etmiştir. 2008 yılı son küresel değerlendirmesine göre amfibilerin yaklaşık üçte biri (% 32) veya 6593 amfibi türü tehdit altındadır. Bu azalışın birçok karmaşık sebebi olabilir. Amfibiler omurgalılar da olduğu gibi hem doğuştan hem de kazanılmış immün sisteme sahip canlılardır. Doğal bağışıklık bireyin birçok farklı patojene karşı anlık tepki göstermesini sağlayan farklı mekanizmaları içerir. Bu mekanizmalar içerisinde antimikrobiyal peptidler ilk sırada yer alır. Her bir kurbağa türünün kendine özgü peptidleri olduğu için, bu peptidlerin sayısı, yapısı ve antimikrobiyal aktivitesindeki türler arasında önemli farklılıklar gösterir. Türkiye’de amfibi bağışıklık sistemi ile ilgili yapılmış herhangi bir çalışma bulunmamaktadır. Bu çalışmada 9 amfibi türünden edilen deri sekresyonlarının antimikrobiyal aktivitelerinin belirlenmesi amaçlanmıştır.
References
- [1] Rollins-Smith, L. A, Doersam J. K, Longcore J. E, Taylor S. K, Shamblin J. C, Carey C. and Zasloff M. A., (2002), Antimicrobial peptide defenses against pathogens associated with global amphibian declines, Developmental- Comparative Immunology, 26(1), 63-72.
- [2] Clarke, B.T., (1997), The natural history of amphibian skin secretion, their normal functioning and potentialmedical applications, Biological Reviews, 72, 365-379.
- [3] Barra, D. and Simmaco. M., (1995), Amphibian skin: a promising resource for antimicrobial peptides, Trends Biotechnology, 13, 205- 209.
- [4] Guo, W., Ao, M., Li, W., Wang, J., Yu, L. and Naturforsch, Z., (2012), Major biological activities of the skin secretion of the chinese giant salamander, Andrias davidianus, Zeitschrift fur Naturforsehung C. Journal of Biosciences, 67, 86-92.
- [5] Gomes, A., Giri, B., Saha, A., Mishra, R., Dasgupta, S. C., Debnath, A. and Gomes, A., (2007), Bioactive molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development, Indian Journal of Experimental Biology, 45, 579-593.
- [6] Siano, A., Gatti, P. I., Imaz, M. S., Zerbini, E., Simonetta, A. C., Lajmanovich, R. and Tonarelli, G. G., (2014), A comparative study of the biological activity of skin and granular gland secretions of Leptodactylus latrans and Hypsiboas pulchellus from Argentina, Records of Natural Products, 8, 128-135.
- [7] Libério, M., Bastos, I. M. D., Junior, O. R. P., Fontes, W., Santana, J. M. and Mariana, S. C., (2014), The crude skin secretion of the pepper frog Leptodactylus labyrinthicus is rich in metallo and serine peptidases, Plos one, https://doi.org/10.1371/journal.pone.0096893.
- [8] Artika, I. M., Pinontoan, S. and Kusrini, M. D., (2015), Antibacterial activity of skin secretion of bleeding toad Leptophryne cruentata and Javan tree frog Rhacophorus margaritifer, American Journal of Biochem Biotechnology, 11(3), 127-131.
- [9] Stebbins, R. C. and Cohen, N. W., (1995), A natural history of amphibians, Princeton University Press, New Jersey.
- [10] Apponyi, M. A., Pukala, T. L., Brinkworth, C. S., Maselli, V. M., Bowie, J. H., Tyler, M. J., Booker, G. W., Wallace, J. C., Carver, J. A., Separovic, F., Doyle, J. and Llewellyn, L. E., (2004), Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance, Peptides, 25, 1035-1054.
- [11] Daly, J. W., Spande, T. F. and Garraffo, H. M., (2005), Alkaloids from amphibian skin: a tabulation of over eighthundred compounds, Journal of Natural Products, 68, 1556- 1575.
- [12] Giangaspero, A., Sandri, L. and Tossi, A., (2001), Amphipathic alpha helical antimicrobial peptides, European Journal of Biochemistry, 268, 5589- 5600.
- [13] Woodley, S. K., (2010), Pheromonal communication in amphibians, Journal of Comparative Physiology A, Neuroethology, Sensory, Neural and Behavioral Physiology, 196, 713-727.
- [14] Calderon, L. A., Silva, A. A. E., Ciancaglini, P. and Guerino, S. R., (2011), Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications, Amino Acids, 40, 29–49.
- [15] Ueki, N., Someya, K., Matsuo, Y., Wakamatsu, K. and Mukai, H., (2007), Cryptides: functional cryptic peptides hidden in protein structures, Biopolymers, 88, 190–198.
- [16] Devine, D. A., (2003), Antimicrobial peptides in defence of the oral and respiratory tracts, Molecular Immunology, 40, 431–443.
- [17] Levy, O., (2004), Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes, Journal of Leukocyte Biology, 76, 909–25.
- [18] Marshall, S. H. and Arenas, G., (2003), Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology, Electronic Journal of Biotechnology, 6, 271–84.
- [19] Zhou, M., Chen, T., Walker, B. and Shaw, C., (2006), Pelophylaxins: Novel antimicrobial peptide homologs from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyifukienensis Identification by ‘‘shotgun’’ cDNA cloning and sequence analysis, Peptides, 27(1), 36-41.
- [20] Afsar, B., Afsar, M. and Kalyoncu, F., (2011), Antimicrobial activity in the skin secretion of brownfrog, Rana macrocnemis (Boulenger, 1885) collectedfrom Turkey, Scientific Research and Essays, 6(5), 1001-1004.
- [21] Oskay, M. and Sarı, D., (2007), Antimicrobial screening of some Turkish medicinal plants, Pharmaceutical Biology, 45, 176-181.
- [22] Solak, M. H., Kalmis, E., Saglam, H. and Kalyoncu, F., (2006), Antimicrobial activity of two wild mushrooms Clitocybe alexandri (Gill.) Konr. and Rhizopogon roseolus (Corda) T.M. Fries collected from Turkey, Phytotherapy Research, 20, 1085-1087.
- [23] Collins, C. M., Lyne, P. M. and Grange, J. M., (1989), Microbiological Methods, Six Edition, Butterworths & Co Ltd London, p. 416. [24] Rinaldi, A.C., (2002), Antimicrobial peptides from amphibian skin: an expanding scenario, Current Opinion in Chemical Biology, 6, 799–804.
- [25] Simmaco, M., Kreil, G., Barra D., (2009), Bombinins, antimicrobial peptides from Bombina species, Biochimica et Biophysica Acta, 1788, 1551–1555.
- [26] Dülger, B., Ugurtas, I. H., Sevinc, M., (2004), Antimicrobial activity in the skin secretion of Bufo viridis (Laurenti, 1768), Asiatic Herpetology Research, 10, 161-163.
- [27] Park, C. B, Kim, M. S., Kim, S. C., (1996), A Novel Antimicrobial peptide from Bufo bufo gargarizans, Biochemical and Biophysic Research Community, 218, 408–413.
- [28] Conlon, J. M., (2008), Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae, Peptides, 29, 1815–1819.
- [29] Cevikbas A., (1978), Antibacterial activity in the skin secretion of the frog Rana ridibunda, Toxicon, 16, 195-197.
- [30] Cetin, T. E., Gurler, N., (1989), Bakterilerin antibiyotiklere duyarlilik deneyinin yapılması, Kukem, 12, 2-5.
- [31] Boman, H. G., (1991), Antibacterial peptides: key components needed in immunity, Cell, 65(2), 205–207.