Research Article
BibTex RIS Cite

FUTURE PROJECTION OF OLIVE PRODUCTION IN ÇANAKKALE

Year 2020, Issue: 044, 33 - 43, 30.06.2020

Abstract

Global warming is one of the most important problems in the world due to its effects not only on human life but also on agricultural products and food safety, sustainability, and water resources. The present study aims to investigate the influence of climatic changes on olive cultivation in North-West Turkey for the next 50 years. In this context, the data were collected from 182 coordinates in olive cultivation areas in Çanakkale which is situated at the intersection of the Euro-Asian region. The data were analysed using MaxEnt software to determine the projection of olive cultivation for the next 50 years. The results show that the optimistic scenario is (representative concentration pathways) RCP 2.6 (2070) while the pessimistic scenario is RCP 8.5 (2070) for Çanakkale olive cultivation. When the results were compared with the current conditions of Çanakkale, the RCP 2.6 scenario indicated that potential olive cultivation areas would mostly be protected. On the other hand, according to the worst scenario, these areas would decrease in size. All of the scenarios, however, show that olive cultivation areas will spread towards the mountainous areas of Çanakkale. Additionally, total olive cultivation areas in Çanakkale will increase depending on climatic changes in 2070. In conclusion, even if climatic changes may lead to an increase olive production yield, their effects on olive and olive oil quality are unknown.

References

  • [1] Clayton, S., Devine-Wright, P., Stern, P. C., Whitmarsh, L., Carrico, A., Steg, L., Swim, J., & Bonnes, M. (2015). Psychological research and global climate change. Nature Climate Change, 5(7), 640-646.
  • [2] Springmann, M., Mason-D'Croz, D., Robinson, S., Garnett, T., Godfray, H. C. J., Gollin, D., Rayner, M., Ballon, P., & Scarborough, P. (2016). Global and regional health effects of future food production under climate change: a modelling study. The Lancet, 387(10031), 1937-1946.
  • [3] Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex V., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535.
  • [4] Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., et al. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I. II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, 151.
  • [5] Hulme, M. (2016). 1.5 C and climate research after the Paris Agreement. Nature Climate Change, 6(3), 222-224.
  • [6] Kumar, A. B., & Ravinesh, R. (2017). Climate Change and Biodiversity. In Bioresources and Bioprocess in Biotechnology (pp. 99-124). Springer, Singapore.
  • [7] Aggarwal, P. K., & Singh, A. K. (2010). Implications of global climatic change on water and food security. In Global change: Impacts on water and food security (pp. 49-63). Springer, Berlin, Heidelberg.
  • [8] Lal, R. (2016). Climate change and agriculture. In Climate Change (pp. 465-489). Elsevier.
  • [9] Mbow, H. O. P., Reisinger, A., Canadell, J., & O’Brien, P. (2017). Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (SR2). Ginevra, IPCC.
  • [10] Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D., et al. (2017). Climate change and global food systems: potential impacts on food security and undernutrition. Annual review of public health, 38, 259-277.
  • [11] Brown, M. E., & Funk, C. C. (2008). Food security under climate change. Science, 319(5863), 580-581.
  • [12] Fischer, G., Shah, M. M., & Van Velthuizen, H. T. (2002). Climate change and agricultural vulnerability.
  • [13] Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food policy, 35(5), 365-377.
  • [14] Parry, M., Rosenzweig, C., & Livermore, M. (2005). Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2125-2138.
  • [15] Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 53-67.
  • [16] Rosenzweig, C., & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367(6459), 133-138.
  • [17] Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703-19708.
  • [18] Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual review of environment and resources, 37.
  • [19] Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508-513.
  • [20] Göğüş, F., Özkaya, M. T., & Ötleş, S. (2009). Zeytinyağı. Ankara: Eflatun Yayınevi.
  • [21] Kayahan, M., & Tekin, A. (2006). Zeytinyagı Uretim Teknolojisi (Olive oil production technology). GMO Pub, Ankara.
  • [22] FAO (2016) Food and Agriculture Organization of United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed July 2019.
  • [23] TÜİK (2011) Turkish statistical institute. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001. Accessed July 2019.
  • [24] Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57.
  • [25] Kumar, S., Graham, J., West, A. M., & Evangelista, P. H. (2014). Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture, 103, 55-62.
  • [26] Mert, A., Özkan, K., Şentürk, Ö., & Negiz, M. G. (2016). Changing the potential distribution of Turkey Oak (Quercus cerris L.) under climate change in Turkey. Polish Journal of Environmental Studies, 25(4), 1633-1638.
  • [27] MGM. (2019) Department of Meteorology General Directorate of Water Affairs and Forestry of the Republic of Turkey climate status of Çanakkale. http://izmir.mgm.gov.tr/FILES/iklim/canakkale_iklim.pdf. Accessed 15 January 2019
  • [28] Hijmans, R. J., Cameron, S. E., & Parra, J. L. (2006). Worldclim global climate layers Version 1.4. available from WorldClim database: http://www. worldclim. org [Verified July 2008].
  • [29] Mert, A., & Kıraç, A. (2017). Habitat Suitability Mapping of Anatololacerta danfordi (Günter, 1876) in Isparta-Sütçüler District. Bilge International Journal of Science and Technology Research, ISSN, 2587-0742.
  • [30] Kıraç, A., & Mert, A. (2019). Will Danford’s lizard become extinct in the future?. Polish Journal of Environmental Studies, 28(3), 1741-1748
  • [31] Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.
  • [32] Phillips, S. J., Dudík, M., & Schapire, R. E. (2004, July). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).
  • [33] Crisci, A., Moonen, C., Ercoli, L., Bindi, M., & per la Meteorologia Applicata, L. F. (2001,July). Study of the impact of climate change on wheat and sunflower yields using a historical weather data-set and a crop simulation model. In Proc. of the 2nd International Symposium Modelling Cropping Systems, Florence, Italy (pp. 119-120).
  • [34] Öğütçü, M., Mendeş, M., & Yılmaz, E. (2008). Sensorial and physico-chemical characterization of virgin olive oils produced in Canakkale. Journal of the American Oil Chemists' Society, 85(5), 441-456.
  • [35] Orlandi, F., Ruga, L., Romano, B., & Fornaciari, M. (2005). Olive flowering as an indicator of local climatic changes. Theoretical and Applied Climatology, 81(3-4), 169-176.
  • [36] Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., De La Guardia, C. D., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184-188.
  • [37] Tanasijevic, L., Todorovic, M., Pereira, L. S., Pizzigalli, C., & Lionello, P. (2014). Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144, 54-68.
  • [38] Gutierrez, A. P., Ponti, L., & Cossu, Q. A. (2009). Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Climatic Change, 95(1-2), 195-217.
  • [39] Ponti, L., Gutierrez, A. P., Ruti, P. M., & Dell’Aquila, A. (2014). Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proceedings of the National Academy of Sciences, 111(15), 5598-5603

ÇANAKKALE ZEYTİN ÜRETİMİNİN GELECEK PROJEKSİYONU

Year 2020, Issue: 044, 33 - 43, 30.06.2020

Abstract

Küresel ısınma, sadece insan yaşamına olan etkileri nedeniyle değil, aynı zamanda tarımsal ürünlere ve gıda güvenliğine, sürdürülebilirliğine ve su kaynaklarına olan etkileri nedeniyle dünyadaki en önemli sorunlardan biridir. Bu çalışma ile önümüzdeki 50 yıl boyunca Kuzey-Batı Türkiye'de iklim değişikliklerinin zeytin yetiştiriciliği üzerindeki etkisinin araştırılması amaçlanmıştır.. Bu bağlamda, veriler Avrupa ve Asya kıtalarının kesiştiği Çanakkale'de bulunan ve hali hazırda zeytin yetiştiriciliği yapılan alanlarda 182 koordinattan toplanmıştır. Veriler, önümüzdeki 50 yıl boyunca zeytin yetiştiriciliğinin projeksiyonunu belirlemek için MaxENT yazılımı kullanılarak analiz edilmiştir. Sonuçlar, en iyi senaryonun RCP 2.6 (2070) olduğunu, en kötü senaryonun ise Çanakkale zeytin yetiştiriciliği için RCP 8.5 (2070) olduğunu göstermiştir. Sonuçlar Çanakkale'nin mevcut koşullarıyla karşılaştırıldığında, RCP 2.6 senaryosuna göre potansiyel zeytin yetiştirme alanlarının daha çok korunacağı belirlenmiştir. Öte yandan, en kötü senaryoya göre ise, bu alanların büyüklüğünün azalacağı tespit edilmiştir. Ancak, tüm senaryolar zeytin yetiştirme alanlarının Çanakkale'nin dağlık alanlarına doğru yayılacağını göstermektedir. Buna ek olarak, Çanakkale'deki toplam zeytin yetiştirme alanları 2070'teki iklim değişikliklerine bağlı olarak artacaktır. Sonuç olarak, iklim değişiklikleri zeytin üretim veriminin artmasına neden olsa bile, zeytin ve zeytinyağı kalitesi üzerindeki etkileri bilinmemektedir.

References

  • [1] Clayton, S., Devine-Wright, P., Stern, P. C., Whitmarsh, L., Carrico, A., Steg, L., Swim, J., & Bonnes, M. (2015). Psychological research and global climate change. Nature Climate Change, 5(7), 640-646.
  • [2] Springmann, M., Mason-D'Croz, D., Robinson, S., Garnett, T., Godfray, H. C. J., Gollin, D., Rayner, M., Ballon, P., & Scarborough, P. (2016). Global and regional health effects of future food production under climate change: a modelling study. The Lancet, 387(10031), 1937-1946.
  • [3] Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex V., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535.
  • [4] Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., et al. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I. II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, 151.
  • [5] Hulme, M. (2016). 1.5 C and climate research after the Paris Agreement. Nature Climate Change, 6(3), 222-224.
  • [6] Kumar, A. B., & Ravinesh, R. (2017). Climate Change and Biodiversity. In Bioresources and Bioprocess in Biotechnology (pp. 99-124). Springer, Singapore.
  • [7] Aggarwal, P. K., & Singh, A. K. (2010). Implications of global climatic change on water and food security. In Global change: Impacts on water and food security (pp. 49-63). Springer, Berlin, Heidelberg.
  • [8] Lal, R. (2016). Climate change and agriculture. In Climate Change (pp. 465-489). Elsevier.
  • [9] Mbow, H. O. P., Reisinger, A., Canadell, J., & O’Brien, P. (2017). Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (SR2). Ginevra, IPCC.
  • [10] Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D., et al. (2017). Climate change and global food systems: potential impacts on food security and undernutrition. Annual review of public health, 38, 259-277.
  • [11] Brown, M. E., & Funk, C. C. (2008). Food security under climate change. Science, 319(5863), 580-581.
  • [12] Fischer, G., Shah, M. M., & Van Velthuizen, H. T. (2002). Climate change and agricultural vulnerability.
  • [13] Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food policy, 35(5), 365-377.
  • [14] Parry, M., Rosenzweig, C., & Livermore, M. (2005). Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2125-2138.
  • [15] Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global environmental change, 14(1), 53-67.
  • [16] Rosenzweig, C., & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367(6459), 133-138.
  • [17] Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703-19708.
  • [18] Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual review of environment and resources, 37.
  • [19] Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508-513.
  • [20] Göğüş, F., Özkaya, M. T., & Ötleş, S. (2009). Zeytinyağı. Ankara: Eflatun Yayınevi.
  • [21] Kayahan, M., & Tekin, A. (2006). Zeytinyagı Uretim Teknolojisi (Olive oil production technology). GMO Pub, Ankara.
  • [22] FAO (2016) Food and Agriculture Organization of United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed July 2019.
  • [23] TÜİK (2011) Turkish statistical institute. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001. Accessed July 2019.
  • [24] Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57.
  • [25] Kumar, S., Graham, J., West, A. M., & Evangelista, P. H. (2014). Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture, 103, 55-62.
  • [26] Mert, A., Özkan, K., Şentürk, Ö., & Negiz, M. G. (2016). Changing the potential distribution of Turkey Oak (Quercus cerris L.) under climate change in Turkey. Polish Journal of Environmental Studies, 25(4), 1633-1638.
  • [27] MGM. (2019) Department of Meteorology General Directorate of Water Affairs and Forestry of the Republic of Turkey climate status of Çanakkale. http://izmir.mgm.gov.tr/FILES/iklim/canakkale_iklim.pdf. Accessed 15 January 2019
  • [28] Hijmans, R. J., Cameron, S. E., & Parra, J. L. (2006). Worldclim global climate layers Version 1.4. available from WorldClim database: http://www. worldclim. org [Verified July 2008].
  • [29] Mert, A., & Kıraç, A. (2017). Habitat Suitability Mapping of Anatololacerta danfordi (Günter, 1876) in Isparta-Sütçüler District. Bilge International Journal of Science and Technology Research, ISSN, 2587-0742.
  • [30] Kıraç, A., & Mert, A. (2019). Will Danford’s lizard become extinct in the future?. Polish Journal of Environmental Studies, 28(3), 1741-1748
  • [31] Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.
  • [32] Phillips, S. J., Dudík, M., & Schapire, R. E. (2004, July). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).
  • [33] Crisci, A., Moonen, C., Ercoli, L., Bindi, M., & per la Meteorologia Applicata, L. F. (2001,July). Study of the impact of climate change on wheat and sunflower yields using a historical weather data-set and a crop simulation model. In Proc. of the 2nd International Symposium Modelling Cropping Systems, Florence, Italy (pp. 119-120).
  • [34] Öğütçü, M., Mendeş, M., & Yılmaz, E. (2008). Sensorial and physico-chemical characterization of virgin olive oils produced in Canakkale. Journal of the American Oil Chemists' Society, 85(5), 441-456.
  • [35] Orlandi, F., Ruga, L., Romano, B., & Fornaciari, M. (2005). Olive flowering as an indicator of local climatic changes. Theoretical and Applied Climatology, 81(3-4), 169-176.
  • [36] Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., De La Guardia, C. D., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184-188.
  • [37] Tanasijevic, L., Todorovic, M., Pereira, L. S., Pizzigalli, C., & Lionello, P. (2014). Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144, 54-68.
  • [38] Gutierrez, A. P., Ponti, L., & Cossu, Q. A. (2009). Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Climatic Change, 95(1-2), 195-217.
  • [39] Ponti, L., Gutierrez, A. P., Ruti, P. M., & Dell’Aquila, A. (2014). Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proceedings of the National Academy of Sciences, 111(15), 5598-5603
There are 39 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Mustafa Öğütcü 0000-0001-8686-2768

Akın Kıraç 0000-0001-5596-2256

Publication Date June 30, 2020
Published in Issue Year 2020 Issue: 044

Cite

APA Öğütcü, M., & Kıraç, A. (2020). FUTURE PROJECTION OF OLIVE PRODUCTION IN ÇANAKKALE. Journal of Science and Technology of Dumlupınar University(044), 33-43.

HAZİRAN 2020'den itibaren Journal of Scientific Reports-A adı altında ingilizce olarak yayın hayatına devam edecektir.