Review
BibTex RIS Cite

Laboratuvar Hayvanı Yemlerine Uygulanan Teknolojik İşlemler ve Yeni Besleme Yaklaşımları

Year 2024, , 24 - 29, 30.06.2024
https://doi.org/10.18678/dtfd.1504013

Abstract

Laboratuvar hayvanlarının beslenmesi, hayvanları içeren araştırma çalışmalarının sağlık, refah ve bilimsel geçerliliğinin sağlanmasında çok önemli bir rol oynamaktadır. Yem işlemedeki teknolojik gelişmeler, araştırmacılara laboratuvar hayvanı diyetlerinin besin kalitesini ve stabilitesini artırmak için yenilikçi araçlar ve teknikler sağlar. Yem işleme teknolojisindeki son gelişmeler, laboratuvar hayvanı diyetlerinin hassasiyetini, tutarlılığını ve besin biyoyararlılığını artırmaya odaklanmıştır. Kontrollü besin profillerine sahip homojen yem formülasyonları oluşturmak için peletleme, ekstrüzyon ve kaplama gibi teknikler yaygın olarak kullanılmaktadır. Yem işlemedeki ilerlemelere ek olarak laboratuvar hayvanlarının özel beslenme gereksinimlerini karşılamak için yeni besleme yaklaşımları ortaya çıkmıştır. Gerçek zamanlı takip sistemlerini ve veri analitiğini birleştiren hassas besleme teknolojileri, yem formülasyonlarının bireysel hayvan ihtiyaçlarına göre özelleştirilmesine olanak tanımaktadır. Genel olarak, laboratuvar hayvanlarının beslenmesinde teknolojik süreçlerin ve yeni besleme yaklaşımlarının entegrasyonu, klinik öncesi ve biyomedikal araştırmalarda hayvan refahını, araştırma kalitesini ve bilimsel sonuçları geliştirmek için umut verici bir yolu temsil etmektedir. Araştırmacılar, en ileri yem işleme tekniklerinden ve özel beslenme stratejilerinden yararlanarak, hem etik araştırma uygulamalarını hem de doğru bilimsel sonuçları destekleyerek laboratuvar hayvanlarının beslenmesini, sağlığını ve refahını sağlayabilmektedirler. Bu derleme, laboratuvar hayvan yemlerine uygulanan teknolojik işlemlere genel bir bakış sunmakta ve hayvan sağlığını ve araştırma sonuçlarını optimize etmeyi amaçlayan yeni besleme yaklaşımlarını ele almaktadır.

References

  • National Research Council (US) Subcommittee on Laboratory Animal Nutrition. Nutrient requirements of laboratory animals; 4th ed. Washington, DC: National Academies Press (US); 1995.
  • Weiss WP. Predicting energy values of feeds. J Dairy Sci. 1993;76(6):1802-11.
  • Rojas OJ, Vinyeta E, Stein HH. Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. J Anim Sci. 2016;94(5):1951-60.
  • Tobin G, Schuhmacher A. Laboratory animal nutrition in routine husbandry and experimental and regulatory studies. In: Hau J, Schapiro SJ, editors. Handbook of laboratory animal science, 4th ed. Boca Raton, FL: CRC Press; 2021. p.269-312.
  • Laurinen P, Siljander-Rasi H, Karhunen J, Alaviuhkola T, Näsi M, Tuppi K. Effects of different grinding methods and particle size of barley and wheat on pig performance and digestibility. Anim Feed Sci Technol. 2000;83(1):1-16.
  • Acosta JA, Petry AL, Gould SA, Jones CK, Stark CR, Fahrenholz A, et al. Effects of grinding method and particle size of wheat grain on energy and nutrient digestibility in growing and finishing pigs. Transl Anim Sci. 2020;4(2):682-93.
  • Stark CR. Feed processing to maximize feed efficiency. In: Patience JF, editor. Feed efficiency in swine. Wageningen: Wageningen Academic Publishers; 2012. p.131-51.
  • Amornthewaphat N, Attamangkune S. Extrusion and animal performance effects of extruded maize quality on digestibility and growth performance in rats and nursery pigs. Anim Feed Sci Technol. 2008;144(3-4):292-305.
  • Hancock JD, Behnke KC. Use of ingredient and diet processing technologies (grinding, mixing, pelleting, and extruding) to produce quality feeds for pigs. In: Lewis AJ, Southern LL, editors. Swine nutrition, 2nd ed. Boca Raton, FL: CRC Press; 2000. p.489-518.
  • Berrocoso JD, Cámara L, Rebollar PG, Guzmán P, Mateos GG. Influence of source and micronization of soya bean meal on growth performance, nutrient digestibility and ileal mucosal morphology of Iberian piglets. Animal. 2014;8(4):555-64.
  • Li YO, Dueik González VP, Diosady LL. Microencapsulation of vitamins, minerals, and nutraceuticals for food applications. In: Sobel R, editor. Microencapsulation in the food industry, 2nd ed. Elsevire: Academic Press; 2023. p.507-28.
  • İpçak HH, Alçiçek A, Denli M. Dietary encapsulated fennel seed (Foeniculum vulgare Mill.) essential oil supplementation improves performance, modifies the intestinal microflora, morphology, and transcriptome profile of broiler chickens. J Anim Sci. 2024;102:skae035.
  • Aloui H, Khwaldia K. Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr Rev Food Sci Food Saf. 2016;15(6):1080-103.
  • Sauer N, Mosenthin R, Bauer E. The role of dietary nucleotides in single-stomached animals. Nutr Res Rev. 2011;24(1):46-59.
  • Celi P, Cowieson AJ, Fru-Nji F, Steinert RE, Kluenter AM, Verlhac V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim Feed Sci Technol. 2017;234:88-100.
  • Pluske JR, Kim JC, Black JL. Manipulating the immune system for pigs to optimise performance. Anim Prod Sci. 2018;58(4):666-80.
  • Bomford M, Redhead T. A field experiment to examine the effects of food quality and population density on reproduction of wild house mice. Oikos. 1987;48:304-11.
  • Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51.
  • Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2004;16(2):166-77.
  • Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature. 2001;409(6822):853-5.
  • DellaPenna D. Nutritional genomics: manipulating plant micronutrients to improve human health. Science. 1999;285(5426):375-9.
  • Afman L, Müller M. Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc. 2006;106(4):569-56.
  • Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003;4(4):315-22.

Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches

Year 2024, , 24 - 29, 30.06.2024
https://doi.org/10.18678/dtfd.1504013

Abstract

Laboratory animal nutrition plays a crucial role in ensuring the health, welfare, and scientific validity of research studies involving animals. Technological advancements in feed processing have provided researchers with innovative tools and techniques to enhance the nutritional quality and stability of laboratory animal diets. Recent developments in feed processing technology have focused on improving the precision, consistency, and nutrient bioavailability of laboratory animal diets. Techniques such as pelleting, extrusion, and coating have been utilized to create homogeneous feed formulations with controlled nutrient profiles. In addition to advances in feed processing, new feeding approaches have emerged to address the specific nutritional requirements of laboratory animals. Precision feeding technologies, incorporating real-time monitoring systems and data analytics, allow for the customization of feed formulations based on individual animal needs. Overall, the integration of technological processes and new feeding approaches in laboratory animal nutrition represents a promising avenue for advancing animal welfare, research quality, and scientific outcomes in preclinical and biomedical research. By leveraging cutting-edge feed processing techniques and tailored feeding strategies, researchers can ensure the optimal nutrition, health, and well-being of laboratory animals, fostering both ethical research practices and robust scientific results. This review provides an overview of the technological processes applied to laboratory animal feeds and introduces new feeding approaches aimed at optimizing animal health and research outcomes.

References

  • National Research Council (US) Subcommittee on Laboratory Animal Nutrition. Nutrient requirements of laboratory animals; 4th ed. Washington, DC: National Academies Press (US); 1995.
  • Weiss WP. Predicting energy values of feeds. J Dairy Sci. 1993;76(6):1802-11.
  • Rojas OJ, Vinyeta E, Stein HH. Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. J Anim Sci. 2016;94(5):1951-60.
  • Tobin G, Schuhmacher A. Laboratory animal nutrition in routine husbandry and experimental and regulatory studies. In: Hau J, Schapiro SJ, editors. Handbook of laboratory animal science, 4th ed. Boca Raton, FL: CRC Press; 2021. p.269-312.
  • Laurinen P, Siljander-Rasi H, Karhunen J, Alaviuhkola T, Näsi M, Tuppi K. Effects of different grinding methods and particle size of barley and wheat on pig performance and digestibility. Anim Feed Sci Technol. 2000;83(1):1-16.
  • Acosta JA, Petry AL, Gould SA, Jones CK, Stark CR, Fahrenholz A, et al. Effects of grinding method and particle size of wheat grain on energy and nutrient digestibility in growing and finishing pigs. Transl Anim Sci. 2020;4(2):682-93.
  • Stark CR. Feed processing to maximize feed efficiency. In: Patience JF, editor. Feed efficiency in swine. Wageningen: Wageningen Academic Publishers; 2012. p.131-51.
  • Amornthewaphat N, Attamangkune S. Extrusion and animal performance effects of extruded maize quality on digestibility and growth performance in rats and nursery pigs. Anim Feed Sci Technol. 2008;144(3-4):292-305.
  • Hancock JD, Behnke KC. Use of ingredient and diet processing technologies (grinding, mixing, pelleting, and extruding) to produce quality feeds for pigs. In: Lewis AJ, Southern LL, editors. Swine nutrition, 2nd ed. Boca Raton, FL: CRC Press; 2000. p.489-518.
  • Berrocoso JD, Cámara L, Rebollar PG, Guzmán P, Mateos GG. Influence of source and micronization of soya bean meal on growth performance, nutrient digestibility and ileal mucosal morphology of Iberian piglets. Animal. 2014;8(4):555-64.
  • Li YO, Dueik González VP, Diosady LL. Microencapsulation of vitamins, minerals, and nutraceuticals for food applications. In: Sobel R, editor. Microencapsulation in the food industry, 2nd ed. Elsevire: Academic Press; 2023. p.507-28.
  • İpçak HH, Alçiçek A, Denli M. Dietary encapsulated fennel seed (Foeniculum vulgare Mill.) essential oil supplementation improves performance, modifies the intestinal microflora, morphology, and transcriptome profile of broiler chickens. J Anim Sci. 2024;102:skae035.
  • Aloui H, Khwaldia K. Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr Rev Food Sci Food Saf. 2016;15(6):1080-103.
  • Sauer N, Mosenthin R, Bauer E. The role of dietary nucleotides in single-stomached animals. Nutr Res Rev. 2011;24(1):46-59.
  • Celi P, Cowieson AJ, Fru-Nji F, Steinert RE, Kluenter AM, Verlhac V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim Feed Sci Technol. 2017;234:88-100.
  • Pluske JR, Kim JC, Black JL. Manipulating the immune system for pigs to optimise performance. Anim Prod Sci. 2018;58(4):666-80.
  • Bomford M, Redhead T. A field experiment to examine the effects of food quality and population density on reproduction of wild house mice. Oikos. 1987;48:304-11.
  • Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51.
  • Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2004;16(2):166-77.
  • Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature. 2001;409(6822):853-5.
  • DellaPenna D. Nutritional genomics: manipulating plant micronutrients to improve human health. Science. 1999;285(5426):375-9.
  • Afman L, Müller M. Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc. 2006;106(4):569-56.
  • Müller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003;4(4):315-22.
There are 23 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Invited Review
Authors

Atakan Tepe 0000-0001-5497-6234

Tolga Altaş 0000-0001-6267-2118

Early Pub Date June 24, 2024
Publication Date June 30, 2024
Submission Date May 3, 2024
Acceptance Date June 6, 2024
Published in Issue Year 2024

Cite

APA Tepe, A., & Altaş, T. (2024). Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches. Duzce Medical Journal, 26(S1), 24-29. https://doi.org/10.18678/dtfd.1504013
AMA Tepe A, Altaş T. Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches. Duzce Med J. June 2024;26(S1):24-29. doi:10.18678/dtfd.1504013
Chicago Tepe, Atakan, and Tolga Altaş. “Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches”. Duzce Medical Journal 26, no. S1 (June 2024): 24-29. https://doi.org/10.18678/dtfd.1504013.
EndNote Tepe A, Altaş T (June 1, 2024) Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches. Duzce Medical Journal 26 S1 24–29.
IEEE A. Tepe and T. Altaş, “Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches”, Duzce Med J, vol. 26, no. S1, pp. 24–29, 2024, doi: 10.18678/dtfd.1504013.
ISNAD Tepe, Atakan - Altaş, Tolga. “Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches”. Duzce Medical Journal 26/S1 (June 2024), 24-29. https://doi.org/10.18678/dtfd.1504013.
JAMA Tepe A, Altaş T. Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches. Duzce Med J. 2024;26:24–29.
MLA Tepe, Atakan and Tolga Altaş. “Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches”. Duzce Medical Journal, vol. 26, no. S1, 2024, pp. 24-29, doi:10.18678/dtfd.1504013.
Vancouver Tepe A, Altaş T. Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches. Duzce Med J. 2024;26(S1):24-9.